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Abstract

This paper studies the long run spatial development of U.S. counties and metro areas between 1800
and 2000. The well-documented orthogonality between population growth and initial population size —
Gibrat’s law — emerges only in the late 20th century. Prior to that, population growth was strongly
decreasing with population from low population levels and moderately increasing with population from
high levels. The negative correlation arose primarily from the entry of new counties. The positive corre-
lation may have arisen, in part, from the decreasing importance of land in production. Over time, both
the negative and positive correlations greatly dampened. But even as late as 1980-2000, Gibrat’s law can
be rejected for counties and metro areas that are relatively young. A simple one-sector model successfully
approximates this mix of population convergence and divergence. Locations differ by a permanent TFP
parameter and the date at which they enter the system of locations. Upon entry, a growth friction slows
the transitions of locations to their steady-state populations. Additionally, land is assumed to become
less important to production over time thereby lessening the model’s only source of congestion. As the
system approaches its steady state, population growth becomes increasingly orthogonal to population.
Gibrat’s law thus emerges as a consequence of attaining a steady state rather than a cause of it.

1 Introduction

The orthogonality of population growth and initial population — Gibrat’s law — has long been considered

a stylized fact of the growth of a system of localities (Eeckhout, 2004). Although recently doubts have

been raised about its empirical validity (Holmes and Lee, 2008), even bigger doubts emerge when going

back further in time (Michaels et al., 2010). Almost all the estimates establishing Gibrat’s law are based

on very recent experiences. But given the rapid expansion of settled land area and aggregate population of

the United States over the course of the nineteenth century, it surely makes sense to examine whether the

recent, arguably steady state characterization, applies equally to a system of locations in transition. Our

paper therefore aims to shed light on the dynamics of local population growth as a country is gradually

settled and then matures.

The paper draws on a panel dataset constructed from each Decennial Census from 1790 through

2000. In addition to this two century time span, the dataset has several unique characteristics. First, we

construct county geographies to be unchanged over periods for which growth is being measured. Often,
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county geographies vary considerably over time due to mergers, splits, and other sorts of border changes.

Failing to account for these changes biases results. Second, we track the years since a county is first included

in a decennial census. This allows us to document the very different population levels and growth patterns

of “young” and “old” counties. Third, we merge counties into metropolitan areas when the contemporary

population and geographical characteristics meet predefined criteria. Doing so, we argue, makes our locations

better correspond to an economically meaningful geography.

Breaking the dataset into 11 panels of 10 or 20 years each, we find two sets of empirical results. First,

the orthogonality of population growth and initial population can be rejected for all 11 periods. During the

nineteenth and early twentieth centuries, population growth was strongly negatively correlated with initial

population for small and intermediate-sized locations. This negative correlation began to dissipate during

the 1920s until by mid-century it had essentially disappeared. Over much of the same two-hundred year time

span, there was a moderate positive correlation between growth and initial population for larger counties

which weakened but remained present in recent time periods. The dissipation of the negative correlation

and the weakening of the positive correlation have moved the U.S. system of locations closer to matching

Gibrat’s law. But as late as the 1980 to 2000 period, deviations from that match remained statistically

significant and meaningful in size.

A second empirical finding is that counties in a similar age category exhibit similar growth patterns

in different time periods. Newly delineated counties, independent of the time period in which such delineation

occurred, experienced relatively high growth. This reflects that many newly created counties were far below

their steady state. As the population levels of new counties rapidly increased, population growth rates began

to taper. For more mature counties growth was more orthogonal to size in all time periods. Correspondingly,

the changing growth patterns of counties over time is related to the changing composition of counties. As

entry of new counties has slowed down, the overall growth pattern has become flatter. This is especially true

for more mature counties. For that subgroup, Gibrat’s law can no longer be rejected in recent years.

A relatively simple, one-sector general equilibrium model successfully approximates this evolving

pattern of local population growth. A large number of locations across which there is high labor mobility

differ with respect to when they enter the integrated system of locations and with respect to exogenous total

factor productivity, which is constant over time. Locations are assumed to have very low populations upon

entry. A friction that dampens a location’s productivity as an increasing function of its growth rate causes

an extended transition to the system’s steady state. During this transition, population growth is negatively

correlated with size for small and intermediate-sized counties. Over the course of the extended transition,

the land share of factor income is assumed to slowly decline. This introduces a moderate positive correlation

between population growth and initial population. As a variation on this baseline model, we also show

that allowing for increasing returns to scale of productivity with respect o population dampens the negative

correlation but falls short of inducing a positive correlation at high populations.

We are not the first to reject the applicability of Gibrat’s law in the context of long-run development.
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Michaels et al. (2010) analyze the relation between size and growth of U.S. places between 1880 and 2000.

They find a U-shaped relationship between population and growth, and propose a model of the structural

transformation to explain this. However, by focusing on only two years, Michaels et al. (2010) do not allow

for dynamics, and more importantly, they do not allow for entry of new places and for settlement of new

land. In our model the entry of new locations and the transition to a steady state is key. This is consistent

with the data, which suggest that the relation between size and growth changes dramatically over time when

looking at all counties, but remains relatively stable over time when only looking at young counties or only

at old counties. To understand the emergence of Gibrat’s law, allowing for entry, and distinguishing between

“young” and “old” counties turns out to be crucial. The theoretical model is then calibrated to match the

empirical dynamics.

Our first conclusion is that historically Gibrat’s law has not held. The relation between size and

growth has been primarily characterized by convergence for smaller counties, and some degree of divergence

between counties above a certain threshold. A second conclusion is that over time the relation between size

and growth has become flatter, thus increasingly approximating Gibrat’s law. A third conclusion is that this

slow convergence is mainly due to the entry of new counties and to local frictions in population growth. The

entry of new locations has two effects. It causes a strong force for convergence in young counties, and it slows

down the transition of the entire system towards a situation of long-run steady state. This transition can be

further slowed down by frictions in the local population growth rate. As entry loses importance, over time the

negative correlation between size and growth for small counties disappears. However, the positive correlation

between size and growth for mid-sized locations continues to be present, though it has also weakened, in

more recent years. Desmet and Rossi-Hansberg (2009) explain this positive correlation in a life-cycle model

of industries where young sectors benefit from agglomeration economies, whereas Michaels et al. (2010)

emphasize the structural transformation and the increasing share of manufacturing in intermediate-sized

locations. [While not the main focus of this paper, we incorporate these insights in a reduced-form manner

in our theoretical model by allowing for agglomeration economies once locations reach a certain threshold

size.]

A second conclusion is that the conventional wisdom that Gibrat’s Law implies asymptotic log

normal and Zipf’s distributions may be backward. For a system of locations at a steady state, regardless

of the distribution of populations, Gibrat’s Law will hold so long as any changes in underlying parameters

and ongoing shock processes are themselves orthogonal to population size. In the present model, the initial

and final period log normal population distributions follow immediately from the assumption that TFP is

distributed as log normal.

The rest of the paper is organized as follows. Section 2 discusses the data, Section 3 reports the

main empirical findings, Section 4 proposes and calibrates a theory of settlement, and Section 5 concludes.

3



2 Data

Our dataset is built using aggregate data for county and county-equivalents from each Decennial Census,

from 1790 through 2000 (Haines, 2005). The nineteenth century was a period during which U.S. settled land

area grew rapidly. As a result the number of reported county and county equivalents soared from under 300

in 1790 to almost 2900 in 1900. The number of counties continued to increase through the mid twentieth

century, but at a more gradual pace.

To facilitate the analysis over time, we use a “county longitudinal template” (CLT) augmented by

a map guide to decennial censuses to merge counties as necessary to keep geographies constant over time

(Horan and Hargis, 1995; Thorndale and Dollarhide, 1987). By far the most common reason for doing so is

the splitting of an existing county into two or more successor counties. For example, suppose county A splits

into counties B and C in 1841. In this case we merge counties B and C together when measuring growth from

1840 or earlier to a year later than or equal to 1841. A similar procedure is used in the less frequent event of

two or more counties joining into a single county. This is more common during the twentieth century than

during the nineteenth century. For example, suppose counties A and B join together in 1901 to form county

C. Addressing this requires merging together counties A and B from 1900 or earlier before comparing them

to county C in 1901 or later. This adjustment for geographical changes implies that we construct a separate

data set for each of the 11 multi-year periods we study (1790-1800, 1800-20, ... , 1980-2000). In other words,

the 1790-1800 data set is based on geographies in 1790; the 1800-20 data set is based on geographies in 1800,

etc.

The CLT also addresses two further issues. First, if there is a significant border change among two

or more counties, it simply merges together all affected counties, both before and after the change. Second,

in some areas there may be a small county equivalent completely surrounded by a much larger county. This

circumstance is especially prevalent in Virginia, which labels many large municipalities as “independent

cities” and considers them county equivalents. In this case, the smaller county equivalent and the larger

surrounding county are simply merged for all years in which they are jointly present. Doing so removes an

endogenous determinant of population and land area that could potentially bias results.

The various county merges implied by the CLT reduces the number of observed locations by about

30 percent during the first part of the nineteenth century and by a relatively modest amount during the

twentieth century. An important limitation of the CLT is that it is formally constructed back only to 1840.

For 1790 through 1830, we use 1840 merge codes with a handful of modifications. Hence if a county A were

to split into B and C in 1791, the CLT would lack a code to merge B and C back together in 1800 and after

to match county A in 1790. Moreover, either county B or county C would likely inherit the county A Census

identification code for 1790. Reported population growth for county A will thus be strongly biased down due

to the loss of significant land area. Results prior to 1840 should therefore be interpreted with some caution.

When metro areas exist, they better correspond to unified labor markets than do their constituent

counties. We therefore combine counties to form metropolitan areas whenever groups of counties meet a set
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of criteria developed by the Census Bureau and the Office of Management and Budget. These criteria are

applied to conditions at the start of any period over which growth is measured. In other words, if a certain

group of adjacent counties do not meet the metro criteria in an initial year but do meet it 20 year later,

they will not be combined. Doing otherwise would introduce a bias towards finding a positive correlation

between growth and initial population.

The criteria themselves do change slightly over time. For the 1800 through 1940 censuses we rely

on Gardner (1999), who applies Census Bureau criteria from 1950 retroactively using to IPUMS data from

each of the censuses. The Census Bureau criteria, in turn, consider a range of characteristics.1 For the 1960

to 1980 period, we use the the “standard metropolitan statistical areas” delineations released by the Office

of Management and Budget in 1963. As these were primarily based on 1960 census data, we are comfortable

with their release several years into the period over which growth is measured. We additionally use the New

England County Metropolitan Areas released in 1975. For the 1980 to 2000 period, we use the 1983 OMB

metro definitions with the exception that we retain the 1963 delineation of of the New York City metro

area. The 1983 Consolidate Metropolitan Area delineation for the New York City metro is far too large to

be considered a single labor market. But its constituent Primary Metropolitan Statistical Area components

tend to be too small. We also use the 1983 New England County Metropolitan area for New England.

In our subsequent analysis, county and metro “age” (taken as a measure of time since first reported in

the census) plays an important role. We measure this based on the “entry date” of a raw county identification

in the census data. In other words, if an observation with raw identification code 101 first appears in the

1790, that observation–and anything with which it may eventually be merged–is assigned an entry date of

1790. A drawback to this methodology is that following splits of raw counties, one or more of the “newly-

identified” raw counties will be assigned an entry year equal to the time of the split. This time-of-secession

value for the time of entry will then persist for all occurrences of the same raw county in future years. To the

extent that such a split may be correlated with above-average population growth, dating entry in this way

may introduce a bias towards finding that “young” observations grow more quickly than “old” ones. On the

other hand, many historical secessions capture the opening of sparsely populated land to settlement. For

example, the majority of New York State’s land area in 1790 was split into just three counties: Montgomery,

Ontario, and Indian Lands. By 1820, these three raw counties had been split into approximately 30 raw

counties. Almost all of these will be assigned an entry year of 1800, 1810, or 1820, rather than 1790. To

the extent that much of New York State was sparsely populated in 1790, such an assignment is probably

appropriate.

[We are developing alternative measures of age for robustness checks]

1A metropolitan designation requires a contiguous group of counties that includes at least one urban center of at least
50,000 inhabitants; all counties must have no more than one-third of employed persons working in the agricultural sector; at
least 10,000 nonagricultural workers; and at least 10 percent as many nonagricultural workers as in the primary county of the
metropolitan area. If the number of nonagricultural workers is below one of these thresholds, the county could nevertheless
be included in the metropolitan area if at least half of its population resides in a thickly settled area (at least 150 persons per
square mile) contiguous to the central city.
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3 Empirical Results

Because of a lack of historical data, most papers on the spatial distribution of population have focused on

systems of locations that are probably close to their long-run steady state. Not much attention has been

paid to growth patterns during probable transitions to long-run steady states. To the extent that Gibrat’s

law indeed exists presently, we know little about how it emerged over time. For the United States, this

means we are largely ignorant about how local growth patters developed as the present-day land mass was

gradually settled. By spanning the nineteenth and twentieth centuries, our analysis aims to address this

shortcoming. Over this period, the continental U.S. population grew from less than 4 million to more than

275 million; the settled continental land area grew from less than 1 million square miles, primarily along the

eastern seaboard, to over 7.5 million square miles, coast to coast.

Because growth patterns gradually changed over the course of these two centuries, we apply our

analysis separately to each of the 20-year time spans from 1800 through 2000. In other words, we run

separate regressions for the ten time spans starting with 1800 to 1820 and ending with 1980 to 2000. As

described in the data section above, the set of locations for each of these ten time spans differs. This reflects

the continual entry into the U.S. system of locations during the nineteenth century as well as numerous

changes in county and metro boundaries through the twentieth century. But as also described above, we

combine counties as necessary to maintain constant boundaries between the beginning and end of any 20

year time span.
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Figure 1: Growth and Size, 1800-2000

For the analysis itself, we run two main types of regressions. The first are non-linear kernels, which

show a first-derivative continuous approximation of growth versus initial population level. These regressions
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allow for sharp visual comparisons of the growth versus initial level relationship as it develops over time.

Second, we run comparable continuous, piecewise-linear spline regressions of growth on initial population.

These allow for more quantitative measures of the dependence on growth on initial population including the

ability to formally test for orthogonality. More specifically, the kernel regressions are of the form

(Li,t+20 − Li,t)/20 = φ(Li,t) + ei,t

where Li,t is the log population for location i in year t. The left hand side is just the average rate of

population growth over twenty years. The estimation uses an Epanechnikov kernel with optimal bandwidth

(Desmet and Fafchamps, 2006). The continuous piecewise-linear regressions are of the form

(Li,t+20 − Li,t)/20 = ~β(1 + ~Li,t) + ei,t

where the vector ~Li,t is 1 by k where k is the number of spline segments. The mapping of log population

into its vector form is such that each spline segment measures the marginal affect of initial population size

on growth while forcing the overall estimated spline to be piecewise continuous. Unless stated otherwise, the

regressions take metro areas and rural counties to be the geographic unit of observation.

Both sets of regressions strongly reject the orthogonality of initial population and subsequent growth

for virtually all time periods. The kernel regressions of the population growth rate as a function of the log

of population at the beginning of each 20-year period in Figure 1 emphasize this visually. To facilitate the

graphical representation, the population growth rate for each 20-year period has been demeaned.2 If Gibrat’s

law were to hold, growth should be orthogonal to size, so that Figure 1 should only show horizontal lines

coinciding with the horizontal axis. This is clearly not the case. A number of additional features stand

out. First, until 1940 the relation between size and growth is very negative for the group of small counties,

implying strong convergence. Second, for the intermediate-sized and large locations the relation between

size and growth is positive, indicating divergence. Third, this negative correlation for the group of small

counties dissipates over time, and is no longer present in the postwar period. Fourth, overall the relation

between size and growth becomes flatter over time, and in that sense gets closer to Gibrat’s law. In spite of

that tendency, even in the most recent period, 1980-2000, Gibrat’s law can still be rejected. To get a sense

of the goodness of fit, Figures 2 and 3 provide scatter plots of the data, together with the estimated kernel

regression and the 95% confidence intervals, for two time periods, 1840-1860 and 1980-2000.

2That is, we have subtracted the average growth rate from the actual growth rate.
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Figure 2:

Growth and Size, 1840-1860
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Figure 3:

Growth and Size, 1980-2000

The corresponding continuous piecewise-linear regressions are reported in Table 1. The intervals

go in increments of 1 (in terms of logs) but intervals are joined if there are not enough observations in a

given interval.3 The results are consistent with those of the kernel regressions, but have the advantage of

3For log population size intervals whose lower bound is less than 8, there must be at least 40 locations. For example if for
log population ranging from 0 up to 7 there are only 39 locations, then the lowest interval will range from 0 to 8 (so long as
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providing standard errors. One important observation is that for locations with a log population above 13

(which corresponds to a population level above 442,414) the relation between size and growth tends not to

be statistically significant. In other words, for large counties Gibrat’s law cannot be rejected. This suggests

that Gibrat’s law may hold for metropolitan areas — as suggested by the literature — but not for smaller

places. Note that the R2 is relatively low in 1790, rises throughout the 19th century, then starts declining,

reaching values close to 0 in recent decades. This suggests that starting at 1790 something happened that

moved the system away from steady state. Rapid expansion of settled land seems to be a good candidate.4

As settlement progressed, the system gradually converged back to a new steady state.

Our interpretation for the strong convergence among small counties until the mid-twentieth century

has to do with small counties being mostly below their steady state level of population, and therefore

experiencing high growth rates. Over time, as those small counties that are below steady state move to

the right of the distribution, the remaining small counties which did not move to the right are those with

relatively low productivity and thus with relatively small steady state sizes. For intermediate-sized and

large locations, there is a positive relation between size and growth, consistent with findings in Desmet and

Rossi-Hansberg (2009) and Michaels et al. (2010). As time goes by, the relation becomes flatter as locations

approach their respective steady states. According to this interpretation, the downward sloping part is driven

by “young” counties, and the relation between size and growth should be flatter for “older” counties than

for “younger” counties. To explore the validity of this interpretation, for each 20-year time period, we split

up our sample into “young” counties, “middle-aged” counties, and “old” counties. For a given 20-year time

period, we define a county to be “young” if it entered in the 30 years prior to the starting year of our time

period. Similarly, “middle aged” counties are between 40 and 70 years old, and “old” counties more than 80

years old.

there is at least 1 location with initial log population between 7 and 8). For intervals with a lower bound of at least 8 but less
than 11 must contain at least 20 locations. Finally, for intervals with lower bounds of at least 11, only 10 locations must be
included.

4In this context settled land should be understood as population density reaching a minimum threshold.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1800
-1820

1820-
1840

1840-
1860

1860-
1880

1880-
1900

1900-
1920

1920-
1940

1940-
1960

1960-
1980

1980-
2000

log(pop) bin:
min to -0.034 -0.053 -0.054 -0.048 -0.008 -0.023 -0.039 0.004 -0.001 0.001
lowest lb (0.004) (0.008) (0.008) (0.006) (0.024) (0.008) (0.006) (0.004) (0.004) (0.002)

lpop.04to06 -0.029
(0.009)

lpop.05to07 -0.045
(0.006)

lpop.06to07 -0.044
(0.013)

lpop.07to08 -0.032 -0.025 -0.023
(0.007) (0.007) (0.007)

lpop.08to09 -0.021 -0.038 -0.027 -0.024 -0.017 -0.002 -0.007 0.003 0.005
(0.006) (0.007) (0.005) (0.004) (0.004) (0.002) (0.002) (0.003) (0.002)

lpop.09to10 0.004 -0.010 -0.005 -0.009 -0.011 -0.009 0.001 0.006 0.003 0.003
(0.004) (0.004) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

lpop.10to11 -0.001 0.012 0.003 0.000 0.003 0.010 0.007 0.011 0.004 0.001
(0.007) (0.004) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

lpop.11to12 0.013 0.013 0.010 0.006 0.012 0.001 0.004
(0.004) (0.003) (0.003) (0.002) (0.003) (0.002) (0.002)

lpop.12to13 -0.004 -0.006 0.000 0.000
(0.003) (0.003) (0.002) (0.002)

lpop.13to14 0.002 0.002
(0.004) (0.003)

highest ub 0.002 -0.004 0.005 -0.004 0.002 -0.001 0.003 0.000 -0.007 -0.002
to max (0.007) (0.007) (0.004) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Bins 4 5 5 8 9 7 7 7 8 8
N 306 540 861 1,687 2,355 2,648 2,943 2,979 2,849 2,630
R2 0.383 0.465 0.589 0.762 0.647 0.359 0.306 0.132 0.043 0.076

Table shows results from regressing average annual population growth rate for listed time period on a spline of initial population. 
The spline is constructed to be continuous with respect to population. Standard errors in parentheses are robust to a spatial 
correlation using the procedure discussed in the main text. Bold type signifies coefficients that statistically differ from zero at the 
0.05 level. Italic type signifies coefficients that statistically differ from zero at the 0.10 level. Top results row is coefficient for the 
lowest bin, whatever it may be. Its range can be immediately inferred from the lower bound of the next highest bin for which a 
coefficient is reported. For example, in column 1 (1800-1820) the initial bin extends from zero up to 9. Similarly, the lower bound of 
the final bin is upper bound of highest previously reported bin. For column 1, the lower bound of the uppermost bin is 11.

All 

Locations
(empirical)

Table 1: Growth and Size, Piecewise-Linear Regressions, 1800-2000
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Figure 4: Young Locations

Figures 4, 5 and 6 show kernel regressions for young, middle-aged and old counties.5 As can be

seen, within each age category the growth patterns do not change dramatically over time. There is strong

convergence for young counties across all time periods, except for 1940-1960. In that most recent time period,

there are few young counties, and none of them are very small. We do not include young counties beyond

1940-1960 because of the lack of observations. For middle-aged counties, we see a U-shaped relation between

size and growth. The smaller ones exhibit convergence and the larger ones divergence. Not surprisingly,

compared to the young counties, their distribution shifts to the right. For old counties, we observe a slightly

positive relation between size and growth, and their distribution shifts even more to the right. For more

recent periods, the relation for old counties becomes flatter.

Another way of looking at the same evolution is by considering a given time period and comparing

the behavior of locations in different age categories. Figure 7 focuses on 1900-1920 and Figure 8 on 1980-2000.

To better see the change in patterns, for 1980-2000 we have split the “old” locations into three subgroups,

“moderately old” (80-110 years), “very old” (120-150 years), and “extremely old” (more than 150 years). In

Figure 7 young locations show strong convergence, middle-aged locations a U-shaped relation, and the old

counties slight divergence. In Figure 8, we have dropped young locations because of a lack of observations.

The pattern that stands out is that as locations age, the relation between size and growth flattens. In

1980-2000 for the “extremely old” category we can no longer reject Gibrat’s law, as suggested by the fact

that we can draw a horizontal line that is in between the confidence intervals (not shown in the figure).

5Note that the demeaning of the data is always done on the entire set of counties and metro areas, whereas the kernel
regressions are run on a subset of those. This explains why in certain cases a kernel curve can be entirely above or below the
horizontal axis which is centered at zero.
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Figure 5: Middle Aged Locations
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Figure 6: Old Locations
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Figure 7: Different Age Categories, 1900-1920
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Figure 8: Different Age Categories, 1980-2000

The fact that it takes a long time for the relation between size and growth to become flatter is

consistent with counties facing substantial frictions rapid population growth. If so, county growth rates

should exhibit considerable persistence: those that grow faster than average one twenty-year period should

grow faster than average the subsequent subsequent twenty-year period as well. Regressing county population

growth on its lagged value establishes that persistence accounts for more than 20 percent of the variation
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(2) (3) (4) (5) (6) (7) (8) (9) (10)

Empirical
1820-40

on
1800-20

1840-60
on

1820-40

1860-80
on

1840-60

1880-1900
on

1860-80

1900-20
on

1880-1900

1920-40
on

1900-1920

1940-60
on

1920-1940

1960-80
on

1940-1960

1980-2000
on

1960-1980

Simple      0.314 0.287 0.135 0.177 0.275 0.239 0.507 0.358 0.672

(0.036) (0.018) (0.010) (0.010) (0.009) (0.012) (0.018) (0.013) (0.011)

N 309 544 865 1692 2369 2655 2950 2982 2852
R2

0.201 0.325 0.174 0.165 0.265 0.136 0.210 0.197 0.581

By init grwth   <agg 0.146 0.160 0.160 -0.143 0.262 0.202 0.718 0.334 0.673

(0.114) (0.067) (0.048) (0.063) (0.053) (0.039) (0.050) (0.025) (0.024)
N<agg 109 327 518 950 1,419 1,879 2,221 2,399 1918

mrgnl R2
<agg 0.004 0.007 0.011 0.002 0.008 0.009 0.055 0.050 0.117

>aggregate 0.313 0.289 0.136 0.162 0.275 0.242 0.474 0.372 0.672

(0.036) (0.018) (0.010) (0.010) (0.010) (0.012) (0.019) (0.018) (0.012)
N>agg 201 217 347 742 950 776 729 583 935

mrgnl R2
>agg 0.200 0.328 0.162 0.127 0.259 0.132 0.158 0.119 0.480

R2
0.207 0.329 0.174 0.178 0.265 0.136 0.216 0.198 0.581

Table 2: Empirical Persistence of Growth Rates

in county growth rates (Table 2, top panel). This persistence derives about evenly from counties’ growing

at greater than the aggregate rate of existing locations and counties growing slower than this rate (Table3,

bottom panel). In other words, location growing rapidly and locations growing slowly both exhibit persistence

(Glaeser and Gyourko, 2005; Rappaport, 2004).

All the results in the empirical section take metropolitan areas and remaining counties as the units

of observation. As a robustness check, we redid all exercises using all counties as the unit of observation.

The results are very similar.

4 Model

We match the observed empirical behavior with a relatively simple, one-sector general equilibrium model of a

system of locations transitioning towards a long run steady state. During the first part of the transition, new

locations are rapidly entering the system. The transition is prolonged by a friction that dampens local total

factor productivity as an increasing function of local population growth. More specifically, at an arbitrary

starting year a small portion of potential locations is assumed to be active. Population is freely mobile so

that wages equalize across locations. The endogenous partition of aggregate population across the initially-
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active locations is assumed to be frictionless. With an unchanged productivity distribution, no change in

aggregate population and no entry of new locations, the initial partition would be a steady state. However,

new locations are assumed to enter, aggregate population grows, and agglomeration economies change the

productivity distribution. The entering of new locations, together with the friction, significantly lengthens

the time it takes for the economy to reach its steady-state. In the long run the relative productivity of

locations ceases to change, and the economy converges to Gibrat’s law.

4.1 Endowments and Locations

The economy consists of N potential locations indexed by i. At time t, a number Nt ≤ N of locations is

actually active. The timing of each potential location’s activation is exogenous. Once active, a location

remains active forever after. Each location is endowed with an identical amount of land, D. For present

purposes, ownership of the land need not be specified other than the requirement that individuals’ receipt

of land income must not depend on where they live.

Aggregate population of the system of active locations, Lt, grows at an exogenous rate `t+1,

Lt+1 = (1 + `t+1)Lt (1)

All agents supply one unit of labor at the location in which they work so that location population and labor

input are both given by Li,t.

4.2 Production

Production in each location is a Cobb-Douglas combination of labor and land multiplied by location- and

time-specific total factor productivity, Zi,t,

Yi,t = Zi,t · L1−α
i,t ·D

α,

Here α is the factor share of income accruing to land. Since land is in fixed supply, it serves as the congestion

mechanism that underpins a long-run steady-state population distribution across locations. Labor and land

are each paid their marginal product. In particular, location wages are given by,

wi,t = (1− α)Zi,t · (
D

Li,t
)α (2)

Total factor productivity can be broken out into three multiplicative factors,

Zi,t = Z0
i · f(∆Li,t/Li,t−1) · g(Li,t)

The first factor, Z0
i , represents permanent TFP, which is the only exogenous source of variation across

locations. It is drawn from a log normal distribution with mean zero and standard deviation, σz0 .

logZ0 ∼ N (0, σZ0) (3)

15



The second factor, f(∆Li,t/Li,t−1), measures a productivity-dampening friction from population

growth. The term ∆Li,t represents the change in the population of i from t − 1 to t. Importantly, this

growth friction applies equally to all residents in a location rather than to migrants only. In consequence,

the utility associated with living in a location at time t does not depend on where one lived at t− 1. Hence

individuals need not be forward looking. The key attributes of f(·) are that it be strictly positive and that

its first derivative be weakly negative, f(·) > 0 and f′(·) ≤ 0. For present purposes, we specialize the friction

component to have strictly positive level and convexity parameters, ξ1 and ξ2, and functional form,

f(∆Li,t/Li,t−1) =

{
max(1− ξ1(∆Li,t/Li,t−1)ξ2 , 0) if ∆Li,t > 0
1 otherwise

(4)

The third factor, g(Li,t), allows for the possibility that a location’s total factor productivity may

endogenously increase with location population. It is assumed to increase with elasticity ε as population

increases. It also allows for a lower bound population, Lt, below which there is no agglomeration.

g(Li,t) = max(Lεi,t , L
ε
t ) (5)

In the base specification below ε is assumed to be zero (no agglomeration). In one of the alternative scenarios

below ε is assumed to increase over time.

On a period-by-period basis, equilibrium of the system of locations depends on free labor mobility

and the friction component of location TFP. For example, if a location has very hight permanent TFP

and a relatively low pre-migration population, its wages will tend to be higher than elsewhere. Migration

into the locality dampens such high wages in two ways. First is that the pairing of the resulting higher

population with the unchanged land area causes labor productivity and hence wages to fall (2). Second is

that the friction associated with the in migration dampens contemporary total factor productivity via the

f(∆Li,t/Li,t−1) component of Zi,t. This ability of positive migration to bring down high location wages

paired with assumed frictionless negative migration, which raises low location wages by increasing land per

worker, are together sufficient to equalize wages across locations on a year-by-year basis.

The equilibrium link between population and total factor productivity is relatively straight forward.

Realizing that the equilibrium wage, wi,t, must be the same across locations, the equation determining wages

can be transformed to give

logLi,t =
1

α
logZi,t + ct (6)

The term ct, which is constant across locations, depends on a number of factors including land area (D),

the land factor share, and the time-specific equilibrium wage level. Note that Zi,t includes components that

depend on population growth and population levels, which is why solutions must be determined numeri-

cally. In a long run steady state, the definition of which is described below, population growth must be

constant across locations. Equal population growth implies identical frictions across locations and identical

proportional changes in agglomeration.6 Letting subscript T denote a steady-state time period, the ratio of

6This relative constancy of g(Li,t) with respect to identical proportional changes in population relies on the elasticity
functional form, (5), along with a lower bound L below the population of the smallest location.
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Zi,T /Zj,T for any two locations i and j will thus always equal Z0
i,T /Z

0
j,T , In this case, the distribution of

population across locations will be log normal with a standard deviation 1
α that of permanent TFP,

logLi,T =
1

α
logZ0

i,t + constantt (7)

4.3 Equilibrium

In our simple framework, the utility of a homogeneous population depends only on their wage income plus

a possible lump sum transfer from rents on land. Hence utility maximization requires only that individuals

choose to work in the location with the highest wages. Free mobility, as experienced by individuals, assures

that wages will be equalized across locations. For an arbitrary initial distribution of individuals across

locations, the growth friction allows this period-by-period equalization to occur with considerably smaller

population reshuffling.

The decision to migrate is theoretically dynamic in the sense comparing the future time path of

utilities flows across locations. In the present setup, however, where one lives in the current period has no

effect on their utility in future periods. Hence the dynamic equilibrium for the model economy is collapses to

a sequence of static equilibria that are linked through the laws of motion for the population and the number

of locations.

We now define three, closely-related, equilibrium concepts. A one period equilibrium captures the

set of conditions that must always hold for the system of locations. A global steady state is attained once all

transition dynamics have played out. A local steady state describes a location that has essentially finished

its transition dynamics, even if the system as a whole has not.

Definition: One-Period Equilibrium A one-period equilibrium is required to hold at all times. It is

described by an allocation of population across locations, {Li,t}Nt
1 , such that wages are the same everywhere

and the sum of the local populations,
∑Nt

1 Li,t, equals the assumed aggregate population, Lt. The model’s

structure insures that goods and factor markets will then clear.

Proposition: There always exists a unique one-period equilibrium so long as α > ε. Proof:

Given the parameter restriction, wi,t will be strictly decreasing in Li,t. For any common wage level, wt,

there will be a unique Li,t that satisfies it. Let w̄t represent a one-period equilibrium common wage. For

any wt < w̄t, the sum of local populations will exceed the assumed aggregate population. For any wt > w̄t,

the sum of local populations will fall short of the assumed aggregate population.

Definition: Global Steady State A global steady state is a one period equilibrium in which all potential

locations have become active, Nt = N , and each location’s population growth equals the aggregate rate,

∀i∆Li,t/Li,t−1 = ∆Lt/Lt−1

This definition can be generalized to account for idiosyncratic shocks that are orthogonal to popu-

lation. To do so, the requirement on matching growth rates is relaxed in the sense that it only need hold in
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expectation.

Description: Local Steady State A local steady state describes the location- and time-specific population

at which a given location’s population growth approximately matches aggregate growth. Any difference from

aggregate growth reflects the entry or exit of locations. All locations at their respective local steady state will

grow at an identical rate.

Although not as precise as might be desired, a the concept of a local steady is very helpful in

understanding the model’s growth dynamics. A local steady-state population, L̃i,t, can be thought of as

the population to which a location is transitioning. Because of the entry of new locations, the rapid growth

of other locations, and aggregate population growth, L̃i,t will in general evolve over time. And because of

entry and rapid growth, local steady-state population growth may be slightly lower than aggregate population

growth. In effect, new and rapidly growing locations “steal” a portion of aggregate population and population

growth. But in the numerical exercises that follow, entry and rapid growth do not appear to cause locations

already at their steady state to be pulled away from it. Note that an alternative definition for global steady

state is that all locations are at their local steady state.

Proposition In the absence of agglomeration (ε = 0), the one-period equilibrium of locations asymptotes

to a global steady state in which the population of all locations grows at the aggregate rate.

Proof: All locations below their local steady-state population must continually grow faster than the aggregate

population growth rate in order to bring their one-period wages down the shared system level. While the

positive growth friction prevents such locations from jumping to their local steady states, continual above

aggregate growth suffices to causes them to asymptote to it. Locations above their local steady states

jump instantaneously to it because they do not face a negative growth friction. The dependence of wage

equalization on maintaining constant relative populations among locations by the local wage determination

equation, (2), requires identical local population growth in a global state. Equal location population growth

in a global steady state is stable in the sense that any location that experienced faster than aggregate

population growth would experience a decrease in relative wages and hence would immediately experience

a population outflow. Any location that experienced slower than aggregate population growth would see its

relative wages rise and so experience a population inflow. .

Corollary In the presence of agglomeration that applies with equal elasticity to all population levels, the

one-period equilibrium of locations asymptotes to a global steady state in which the population of all locations

grows at the aggregate rate so long as the elasticity of TFP with respect to population is less than land’s

share of factor income.

Proof: The parameter restriction, ε − α < 0 and Lt = 0, assures that population growth faster than

the aggregate rate will cause a location’s relative wage to decline. Symmetrically, growth slower than the

aggregate rate would cause a location’s relative wage to rise. As above population flows would immediately
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undo the differential growth rates. .

Note that the above propositions and proofs do not depend on the growth friction. Rather it is

the dampening of wages by the fixed supply of land in production that is key. The requirement that the

agglomeration elasticity must apply to all population levels reflects that otherwise aggregate population

growth will cause locations with Li,t ≥ Lt to experience faster growth than those with Li,t < Lt. The former

locations benefit from a positive feedback that the latter do not.

5 Numerical Results

In this section we calibrate the theoretical model, and show that it is able to account for the settlement

patterns of the U.S. over the last 200 years.

5.1 Calibration

The model depends on a few key parameter choices (Table 3). Following Eeckhout (2004), we assume total

factor productivity is distributed log normally across locations. We set the land share of factor income, α, to

be 0.15. This value is extremely high relative to estimates of land’s share of factor income from manufacturing

circa 2000. However, traded production, primarily agricultural, was obviously much more land intensive in

1790. Moreover, housing, which has a much higher land share, should be taken account to accurately gauge

the congestion arising from a fixed land supply. For present purposes, α is largely irrelevant since it only

matters in conjunction with the variance parameter governing the distribution of TFP across locations. For

a shared wage level across locations, log(Li) equals w
α log(Zi)

. So to match the empirical population variance,

σ2
D, Var(log(Zi)) can be set to α2 Var(log(Li)). Thus the higher the assumed land share, the higher the

assumed TFP variance.

Two parameters that do have considerable influence on transitional dynamics are the level and

convexity of the population growth friction, ξ1 and ξ2 in (4). For better intuition and without loss of

generality, ξ1 is mapped to ξ̂1, which is defined as the desired value of the productivity friction multiplier,

g(·) at a specified growth rate, ̂∆Li,t/Li,t−1. Without loss of generality, we set ̂∆Li,t/Li,t−1 to 4 percent.

Based on a grid search over combinations of ̂∆Li,t/Li,t−1 and ξ2, we set the former equal to 0.94 and the

latter equal to 1. In other words, our preferred friction parameterization is a convexity of 1 and a value of

xi1 such that at a 4 percent growth rate, the friction multiplier equals 0.94.7 Note that the growth friction

applies to all positive growth, including location growth attributable to aggregate population growth. Results

are similar from having the growth friction apply only above some lower threshold growth rate. The main

reason is that what matters for TFP is relative frictions, not absolute ones. If all locations grow at the

aggregate rate, the growth friction is the same across locations and thus cancels itself out. In this case, it

would be as if there was no growth friction.

7More specifically, ξ1 = −(ξ̂1−1)/( ̂∆Li,t/Li,t−1

ξ
) The choice of 4 percent, a modestly above average growth rate historically,

is meant to help intuition.
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The criteria for the grid search over combinations of ξ̂1 and ξ2 is to minimize the weighted root mean

square error between the empirical and simulated distributions of growth rates. The comparison included

the growth distribution across all active locations during each of the twenty year periods, 1800-1820 through

1980-2000. The comparisons were made between the distributions for all active locations in each of the

periods, as well as against distributions after dividing the observations into “young”, “intermediate” and

“old” age groups. The classification into one of these categories is based on whether a location as been active

0 to 39 years, 40 to 79 years, and 80 or more years.

Another important parameterization choice is the population value, L̃, that serves as the basis for

the growth friction for newly entering locations. Newly entering locations are subject to the same friction

as previously-entered locations. But the new locations don’t have a lagged population with respect to which

growth is calculated. We choose a value for this friction calculation, which can be thought of as a lagged

pseudo population, equal to the lowest-population location in the period prior to their entry.8 Entry using

higher lagged values of L̃ can reverse the negative correlation of population growth with initial population for

initial populations below L̄. The reason is that all locations with population below L̄ will be there because

of low TFP values and hence will be growing slowly. Once population rises above L̄, a high share of locations

will be transitioning thereby causing growth to be decreasing in population levels

The parameterization is summarized by Table 3.

5.2 Level Fit

This text reflects a previous base parameterization with a fixed land share and needs to be updated

A comparison of the simulated and empirical log population distributions for four different years

shows the simulated and empirical to be a relatively tight match (Table 4). The simulated results are

averages from 50 separate runs of the model, each with a different stochastic seed determining the simulated

productivity draws. The empirical results are based on non-metro builds of the data, which is appropriate

for level comparisons.9

The exact matching of aggregate and mean population (reported in logs) is by construction. More

substantive is that at the 5th percentile and above, the simulated distribution for 1790 remains within 0.2

log points (22 percent) of the empirical distribution. From the 20th percentile to the 99th percentile, it

remains within 0.1 log points of the empirical distribution. Not as good a fit is the full log point by which

the minimum simulated population exceeds the minimum empirical population. But such a difference of

this size at the far tails is relatively common in exercises of this sort, particularly when the simulation is

averaged across a number of independent runs. The generally close matching of the simulated and empirical

8More specifically, we choose the minimum population among locations that are at least 40 years old. The purpose of this
minimum age of 40 is to avoid choosing a pre-entry population based on locations that have just recently entered, which by
the model setup are implicitly forced to have temporarily low population. For the years earlier than 1830, we use the minimum
population of locations that were active in 1790.

9Alternatively, comparing the singleton simulated locations with metro combinations of what are typically already high-
population counties leads to a significant mismatch between the upper portions of the two distributions.
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symbol interpretation value source

sensitivity of 
growth vs 
population

αt land share of factor income:

     t=1790 to 1840 0.15 arbitrary for fixed σ: large

     t=1960 to 2000 0.10 calibrated (partial) moderate

     t= 1840 to 1960 0.15e‐k(t‐1840) exponential transition low

F(Zi) distribution of tfp lognormal Eeckhout (2004)

   μlog(Z) mean log(tfp) 0 normalization

   σlog(Z) std dev of log(tfp) α1790∙σlog(L_i),1790 calibrated moderate to high

hat(ξ1) growth friction, level 0.935@0.04 growth calibrated small to moderate

ξ2 growth fricition, convexity 1 calibrated small to moderate

ε  tfp elasticity to population:

     base 0

     alternative 0.03 benchmark

tilde(Li,t) pre‐entry population minage>=40(Li,t) arbitrary medium

Lt aggregate population U.S. aggregate decenial census small

Nt number of active locations U.S. aggregate decenial census small

Table 3: Parameterization
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distributions reflects the ability of a log normal distribution to describe the empirical distribution. The link

is that the 1790 simulated distribution is log normal by construction, being a multiplicative transformation

of the assumed lognormal TFP distribution.

The simulated population distribution closely matches the empirical distribution through 1880. In

that year, the simulated distribution remains within 0.2 log points of the empirical one from the 10th through

the 95th percentiles. But during the twentieth century, the simulated and empirical distributions diverge.

In particular, from the minimum population county up through the 80th percentile county, populations are

at least moderately higher in the simulated ones. And at the very right of the population distribution,

simulated populations are a fraction of their empirical counterparts.

sim emp* sim emp* sim
sim

=0.075 emp*

locations 232 232 2,728 2,696 3,067 3,067

log(aggregate pop) 15.2 15.2 18.1 18.0 19.4 19.4

log(mean pop) 9.7 9.7 10.2 10.1 11.4 11.4

log(s.d. pop) 9.7 9.7 10.3 10.6 11.4 12.2

log(median pop) 9.4 9.4 9.9 9.7 11.1 10.1

log(min pop) 7.1 6.0 7.2 1.4 8.2 4.2

log(pop.pctl.01)                7.5 7.2 7.8 5.9 9.2 7.0

log(pop.pctl.05) 8.0 8.2 8.4 7.6 9.7 8.1

log(pop.pctl.10)           8.3 8.5 8.8 8.3 10.0 8.6

log(pop.pctl.20)           8.7 8.7 9.2 9.0 10.4 9.1

log(pop.pctl.25)           8.8 8.8 9.3 9.2 10.5 9.3

log(pop.pctl.30)           9.0 9.0 9.4 9.3 10.6 9.5

log(pop.pctl.40)           9.2 9.1 9.7 9.6 10.9 9.8

log(pop.pctl.50)           9.4 9.4 9.9 9.7 11.1 10.1

log(pop.pctl.60)           9.6 9.6 10.1 9.9 11.3 10.5

log(pop.pctl.70)           9.8 9.8 10.3 10.1 11.5 10.8

log(pop.pctl.75)           10.0 9.9 10.5 10.2 11.6 11.0

log(pop.pctl.80)           10.1 10.1 10.6 10.3 11.8 11.3

log(pop.pctl.90)           10.4 10.5 11.0 10.7 12.1 12.1

log(pop.pctl.95)           10.7 10.8 11.3 11.2 12.4 12.8

log(pop.pctl.99)           11.3 11.1 11.9 12.3 13.0 14.0

log(max pop) 11.7 11.9 12.9 14.5 14.0 16.1

1790 1900 2000

Table 4: Level Fit (Table 4 is up to date)

The main reason for this deterioration in match quality is the constant assumed land factor share

in the simulation. Whatever the land factor share was in 1790, it almost surely declined significantly over
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the ensuing 210 years. A declining land share causes high productivity counties to grow quicker by relaxing

the model’s only source of long-run congestion. Conversely, a declining land share causes low productivity

counties to lose population by reducing the input value of their abundant land. The model abstains from

including a declining land share. In its one-sector framework, steady-state county populations are determined

solely by underlying TFP. Hence a declining land share would be a significant force for divergence. In other

words, essentially by assumption there would be a strong positive correlation between size and growth. In a

richer model this need not be so. For example, a declining land share might correspond to the introduction

of a new product or technology with a TFP draw across locations orthogonal to the TFP draw underlying

current production. Consistent with this, the simulated log population distribution for 2000 fits its empirical

counterpart relatively tightly when the assumed land share is approximately half its 1790 level.

5.3 Growth Fit

This text reflects a previous base parameterization with a fixed land share and needs to be updated

The match between simulated and empirical growth rates is also fairly good (Table 5). As with the

levels above, the reported growth rates are the averages from 50 runs of the simulation. Through the middle

percentiles of the 1820-40, 1860-80, and 1900-20 periods, simulated growth rates remained relatively close

to empirical ones. For example, simulated growth rates for 1820-40 remained within 1 percentage point of

their empirical counterparts from the 10th through the 70th percentiles; they remained within 1.3 percentage

points from the 5th through the 95th percentiles.
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All Loca(ons*

sim emp dif sim emp dif sim emp dif sim emp dif

Loca%ons 545 544 1,707 1,692 2,696 2,655 3,064 2,982
Agg (all) 2.9 2.9 (0.0) 2.1 2.1 (0.0) 1.7 1.7  (‐0.0) 1.5 1.5  (‐0.0)
Agg (exis%ng) 2.1 2.0 (0.0) 1.6 2.2  (‐0.6) 1.5 1.6  (‐0.1) 1.5 1.5  (‐0.0)
Mean 2.8 2.3 (0.5) 2.5 3.4  (‐1.0) 1.7 1.3 (0.4) 1.5 0.2 (1.3)
Std.Dev. 3.0 3.2  (‐0.2) 3.3 4.7  (‐1.4) 1.7 2.5  (‐0.8) 0.6 1.8  (‐1.2)
Median 1.7 1.4 (0.3) 1.2 2.0  (‐0.7) 1.0 0.7 (0.3) 1.3 0.0 (1.3)

Minimum 0.4 ‐3.8 (4.2) ‐0.7 ‐3.6 (3.0) 0.8 ‐8.0 (8.8) 1.3 ‐4.8 (6.1)
Pc%le 01 0.5 ‐2.8 (3.2) ‐0.6 ‐0.6 (0.1) 0.8 ‐1.8 (2.6) 1.3 ‐3.1 (4.4)
Pc%le 05 0.5 ‐0.9 (1.3) ‐0.6 0.0  (‐0.6) 0.8 ‐1.0 (1.9) 1.3 ‐2.2 (3.5)
Pc%le 10                           0.5 ‐0.3 (0.7) ‐0.6 0.4  (‐0.9) 0.8 ‐0.7 (1.5) 1.3 ‐1.7 (3.1)
Pc%le 20                           0.5 0.2 (0.2) ‐0.5 0.8  (‐1.3) 0.8 ‐0.3 (1.1) 1.3 ‐1.2 (2.5)
Pc%le 25                           0.5 0.4 (0.0) ‐0.4 1.0  (‐1.4) 0.8 ‐0.2 (1.0) 1.3 ‐1.0 (2.3)
Pc%le 30                           0.5 0.6  (‐0.2) ‐0.2 1.2  (‐1.4) 0.8 0.0 (0.9) 1.3 ‐0.8 (2.1)
Pc%le 40                           0.5 1.0  (‐0.6) 0.3 1.6  (‐1.3) 0.9 0.3 (0.6) 1.3 ‐0.4 (1.7)
Pc%le 50                           1.7 1.4 (0.3) 1.2 2.0  (‐0.7) 1.0 0.7 (0.3) 1.3 0.0 (1.3)
Pc%le 60                           2.6 2.0 (0.6) 2.4 2.4  (‐0.0) 1.1 1.1 (0.0) 1.3 0.4 (0.9)
Pc%le 70                           3.8 2.9 (0.9) 3.7 3.2 (0.5) 1.5 1.6  (‐0.1) 1.4 0.8 (0.6)
Pc%le 75                           4.5 3.4 (1.1) 4.5 3.7 (0.8) 1.8 2.0  (‐0.2) 1.4 1.1 (0.3)
Pc%le 80                           5.3 4.0 (1.2) 5.4 4.5 (0.9) 2.2 2.4  (‐0.3) 1.4 1.5  (‐0.1)
Pc%le 90                           7.4 6.3 (1.1) 7.5 8.0  (‐0.5) 3.5 4.0  (‐0.5) 1.9 2.5  (‐0.6)
Pc%le 95                           9.0 8.3 (0.7) 9.1 12.9  (‐3.8) 5.2 5.8  (‐0.6) 2.7 3.6  (‐1.0)
Pc%le 99                           11.9 14.4  (‐2.4) 12.0 24.9  (‐12.9) 9.7 10.8  (‐1.1) 4.5 6.2  (‐1.7)
Maximum 14.9 21.4  (‐6.4) 15.8 35.2  (‐19.4) 15.6 28.2  (‐12.6) 10.6 11.8  (‐1.2)

* empirics are based on metro build
simulated growth rates are average values from 50 runs of the model using different stochas%c seeds

1820‐40 1860‐80 1900‐20 1940‐60

Table 5: Growth Fit Table 5 reflects a previous base parameterization with a fixed land share

For these same three time periods, the fit at the tails is considerably worse. At the lower tail, for

example, 1st percentile simulated growth in 1820-40 was 3.2 percentage points above its empirical value.

The difference for minimum growth ranged from 3 percentage points in 1860-80 to almost 9 percentage

points in 1900-20. This inability of the model to match what are typically negative empirical growth rates

is structural. In the model, counties’ stochastic TFP values are once and for all. Counties are also assigned

a pre-entry population value, which in the current parameterization is the minimum population of already

active counties in the year prior to entry. This pre-entry population serves as the denominator of an implicit

growth rate with the actual entry population, which is determined endogenously. More specifically the same

friction function, (4), applied to active locations’ growth, is also applied to entering implicit growth. For

almost all counties, local TFP will be sufficient to imply a steady-state population above the entry level.

But for counties with extremely low TFP, steady-state population may be below the pre-entry assumption.

Because there are no frictions on population decline, such counties will enter at what are their more-or-

less steady-state populations. The absence of downward growth frictions and of location-specific post-entry

shocks does away with most negative growth.

Of course, in the real world county populations do decline, often over extended periods. It is these
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empirically declining counties —by definition located at the left tail— that the model can not match. Doing

so can be accomplished in at least three ways. First would be to allow for a period-by-period county-specific

stochastic shock. When a county received a large negative such shock, it would immediately jump down

to its lower population steady state.10 Unlike the case of entry, this decline would cause measured growth

to be negative. But there would be no persistence. Second, as described in the previous subsection, would

be if the land-factor share of income were gradually declining. In this case, low TFP counties would also

gradually decline over time. Third would be to move to a two-sector model in which the TFP of a first sector

was persistently declining relative to the TFP of a second sector. Depending on relative elasticities of supply

and demand, counties that had high TFP in the first sector would persistently grow or decline relative to

counties with high TFP in the second sector.

In the present model, the only way county populations decline is if counties on the upward transition

to their steady state together “steal” enough population from counties already near their steady states such

that the latter shrink. More precisely, the latter group of counties can be thought of as staying near

location-specific steady-state populations that are themselves declining. Since this stealing is typically from

a large number of counties with high aggregate population, the implied numerical declines are typically small.

Moreover, aggregate population growth helps mitigate the need for any local population decline. For the

1860-80 time period, simulated population decline diminishes from -0.7 percent for the slowest county down

to -0.2 percent for the simulated 30th percentile county.

Conversely, at the upper tail simulated growth rates fall considerably short of empirical growth

rates. For example, in the 1860-80 regression the 99th percentile simulated growth rate trails the empirical

99th percentile growth by almost 13 percentage points. The maximum simulated growth rate does so by

more than 19 percentile points. Given the smooth way in which the frictions dampen growth, this right-tail

discord is inevitable. Fortunately, the discord really only applies above the 95th percentile.

The fit between simulated and empirical growth rates is less tight for the 1940-60 regressions. For

example, the range over which simulated growth stays within 1 percentage point of empirical growth narrows

to the 60th-90th percentiles. The difference between the simulated and empirical median growth rises to

1.3 percentage points.11 Also notice that simulated growth rates are relatively flat across all but the top

10th percentile of the 1940-60 distribution. The reason is that by 1940, most of the simulated counties have

approximately attained their steady-state population.

10“Steady state” as used herein should be interpreted as varying over time, both due to the transition of other counties to
their time-dependent steady states as well as due to entry. In contrast, the steady state of the system as a whole should be
interpreted as the system’s final distribution of population across counties if there were no future entry or parameter changes.

11The increase in the difference between simulated and empirical mean growth is less informative. Its main source is the
difference in the number of locations due to the combining of empirical counties to match metro-area formation. Indeed,
starting in 1930 the number of empirical locations declines as metro areas subsume more and more counties. The main purpose
of combining empirical counties into metro areas is to better match labor markets in an initial year with their subsequent
growth. There is no obvious need or means to do this in the simulation.
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5.4 Persistence

This text reflects a previous base parameterization with a fixed land share

The simulated system of locations is characterized by extremely persistent growth (Table 6). Regress-

ing population growth on lagged population growth beginning with 1820-40 (on 1800-20) through 1980-2000

always yields coefficient values of approximately 0.20. More importantly for present purposes, the regressions

account for most of the variation in growth. R-squared values range from 0.971 to 0.997.

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1800-20

on
1790-1800

1820-40
on

1800-20

1840-60
on

1820-40

1860-80
on

1840-60

1880-1900
on

1860-80

1900-20
on

1880-1900

1920-40
on

1900-1920

1940-60
on

1920-1940

1960-80
on

1940-1960

1980-2000
on

1960-80

Simple

N 232 310 545 870 1707 2397 2696 3014 3064 3067

ρ -0.447 0.233 0.221 0.245 0.201 0.225 0.219 0.219 0.203 0.197
(0.060) (0.001) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

R2 0.198 0.994 0.991 0.997 0.971 0.991 0.989 0.992 0.995 0.996

By age

Nyoung all 78 313 560 1162 1527 989 617 368 to fill

ρyoung locs 0.266 0.235 0.249 0.221 0.231 0.229 0.227 0.207 in
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) 0.00

mrgnl R2
young are 0.237 0.588 0.712 0.749 0.773 0.691 0.679 0.719

Nint 78 313 560 1162 1527 989
ρint 0.222 0.112 0.179 0.138 0.096 0.149

mrgnl R2
int 0.014 0.015 0.020 0.009 0.001 0.005

Nold 232 232 232 232 310 545 870 1707
ρold -0.121 0.162 0.221 0.103 0.179 0.144 0.107 0.149

mrgnl R2
old 0.001 0.032 0.044 0.012 0.014 0.009 0.002 0.007

R2 0.998 0.995 0.998 0.988 0.993 0.993 0.994 0.996

By init grwth
Nbelow no 233 299 524 917 1,524 1,916 2,405 2,606 2656
ρbelow lagged -0.128 0.144 0.204 0.065 0.137 0.123 0.090 0.121 0.116

(0.013) (0.003) (0.002) (0.002) (0.002) (0.002) (0.004) (0.002) (0.002)
mrgnl R2

below var. 0.001 0.019 0.027 0.005 0.010 0.007 0.001 0.003 0.003

Nabove 77 246 346 790 873 780 609 458 411

ρabove 0.267 0.240 0.254 0.240 0.240 0.232 0.228 0.209 0.200
(0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

mrgnl R2
above 0.233 0.492 0.487 0.555 0.554 0.641 0.658 0.626 0.773

R2 0.998 0.996 0.998 0.995 0.995 0.994 0.994 0.997 0.997

old

Table 6: Simulated Persistence in Growth Rates Table 6 reflects a previous base parameterization with a

fixed land share
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The ability of lagged growth to accurately reflect current growth can primarily be attributed to

“young” locations. Allowing for different coefficients for each of three age groups and then constraining

this regression to have a zero coefficient on young locations’ lagged growth lowers R-squared from its non-

constrained value by 24 percentage points for 1820-40 and by at least 59 percentage points for all other

years. Correspondingly constraining the the intermediate and old coefficients causes marginal R-squared

contributions of no more than 4 percentage points. Put differently, growth by the intermediate and old

locations can mostly be captured by a constant. The fitted growth of young locations, in contrast, benefits

greatly from taking account of lagged growth.

Unsurprisingly given the assumed positive growth frictions, the persistence is almost entirely driven

by locations experiencing positive population growth. The bottom panel in Table 6 allows for different

coefficients according to whether a location’s lagged growth exceeded or fell short of aggregate population

growth (of all locations active at the start of the lagged period). A comparison from constraining each of

the below-average and above-average lagged growth coefficients with the unconstrained regression finds a

marginal R-squared of 23 to 66 percentage points associated with the above-average locations but of no more

than 3 percentage points from the below average locations. Similar to the division by age, the fitted growth

of locations growing faster than average greatly improves when taking account of lagged growth.

5.5 The Simulated Emergence of Gibrat’s Law: Growth versus Initial Popula-
tion

Text reflects a previous base parameterization with a fixed land share

Beginning with the 1800-20 cross-section, the simulated system of locations nicely matches the

negative empirical correlation between growth and initial population size. It continues to do so through the

1920-40 cross-section (Table 7). This match is characterized by a quantitatively large (in absolute value)

negative coefficient on initial population for the smaller population bins. More specifically, the negative

correlation between simulated population and growth typically extends up to at least a log population of 10

(population of 22,000). Coefficients on the corresponding log population bins ranged from -0.004 to -0.059.

In other words, a 1 percent increase in initial population is associated with slower population growth of 0.004

to 0.059 percentage points. The negative correlation of population growth with initial population size also

generally holds for the population bins ranging above 10. But the magnitudes are smaller. The maximum

coefficient (in absolute value) for these bins is -0.006.

The simulated coefficients are very similar to their 1800-20 to 1920-40 empirical counterparts. For

log population up to 10, the statistically significant empirical coefficients range from -0.007 to -0.059, almost

exactly the same as the simulated range. Above a log population of 10 all statistically-significant empirical

coefficients are positive, ranging from 0.006 to 0.013. This empirical divergence of population at high levels

cannot be matched by the model in its current form. To do so would require introducing allow TFP to

increase with population size above some moderately high threshold. Doing so is a priority for future
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research.

TABLE.sim.initpop.01d.xlsx \ all.TABLE \ 25/9/11

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

All
Locations

1790
-1800

1800
-1820

1820-
1840

1840-
1860

1860-
1880

1880-
1900

1900-
1920

1920-
1940

1940-
1960

1960-
1980

1980-
2000

log(pop) bin:
min to lowest lb 0.000 -0.029 -0.032 -0.032 -0.037 -0.035 -0.059 -0.040 -0.001 0.000 0.000

lpop.08to09 -0.046 -0.032 -0.036 -0.033 -0.041 -0.023 -0.040

lpop.09to10 0.000 -0.005 -0.014 -0.013 -0.020 -0.010 -0.004 -0.010 0.000 0.000 0.000

lpop.10to11 0.001 -0.006 -0.004 -0.005 -0.001 -0.003 0.000 -0.001 0.000 0.000

lpop.11to12 -0.001 0.000 -0.001 0.000 0.000

lpop.12to13 0.000

highest ub to max 0.000 -0.001 -0.003 -0.002 -0.002 -0.003 0.000 0.000 0.000 0.000 0.000

Seeds 50 50 50 50 50 50 50 50 50 50 50
N/Seed 232 310 545 870 1,707 2,397 2,696 3,014 3,064 3,067 3,067
Bins 3 5 5 5 5 5 6 6 5 5 6
R2 0.001 0.521 0.355 0.348 0.393 0.422 0.199 0.322 0.007 0.001 0.005

R2 across 50 Seeds
  mean 0.513 0.342 0.337 0.383 0.413 0.196 0.320 0.009 0.002 0.006
  min 0.303 0.152 0.153 0.173 0.230 0.085 0.219 0.003 0.000 0.003
  max 0.728 0.519 0.564 0.572 0.613 0.328 0.481 0.023 0.004 0.0130.0000

Table shows results from regressing each locations' average annual population growth rate for listed time period on a spline of initial population. The spline is 
constructed to be continuous with respect to population. Top results row is coefficient for the lowest bin, whatever it may be. It can be immediately inferred from the lower 
bound of the next highest bin for which a coefficient is reported. Results are from 50 independent runs of the simulation, each using a different stochastic seed. Each 
location's initial population and growth rate are stacked on top of each other. Coefficients can thus be interpreted as an approximate average of coefficients from each 
separate seed. Summary statistics of R-squared values across the 50 runs are listed in the third panel.

Table 7: Simulated Growth on Initial Population Table 7 reflects a previous base parameterization with a

fixed land share

As is the case empirically, an initial population spline accounts for a large share of the variation

in location growth rates. For the 1800-1820 through 1920-1940 cross-sections, the mean R-squared value

across the 50 stochastic seeds ranged from a low of 0.196 for 1900-20 to a high of 0.513 for 1800 to 1820

(third panel of Table 8). For some seeds in some years, R-squared values ran as high as 0.728. In contrast,

initial population accounts for almost no variation in simulated growth from 1790 to 1800. This reflects that

for this cross section, there is no variation to account for. The system of locations in 1790 is essentially at

its steady state because, by assumption, these initial locations enter the system with no frictions limiting

the distribution of aggregate population. Changes in these locations’ population over the first decade come

strictly from aggregate population growth, partly offset from the “pull” of population away from them from

entering locations. As a result, growth is identical across locations regardless of size. Similarly, simulated

R-squared values are close to zero for the 1940-60 through 1980-2000 regressions. This reflects that by about

1940, the simulated system of locations is rapidly approaching its steady state.12

12As shown in Table 5, about 10 percent of locations during the 1940-60 cross section are growing significantly faster than
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The decline of population growth as initial population size increases is driven primarily by young

locations (Figure 9). For the 1820-40 through the 1920-40 cross sections, the coefficients on log population

up to 10 ranged from -0.025 to -0.055. In other words, a 1 percent increase in a young location’s population

was associated with a 0.025 to 0.055 percentage point of faster growth. As above, these are relatively large

values considering that a 1 percent increase at log population equal to 10 is just 220. R-squared values are

similar to those for the all locations simulated regressions.
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Figure 9: Simulated Growth by Location Age Figure 9 reflects a previous base parameterization with a fixed

land share

Similar regressions for intermediate and old locations show growth to be essentially orthogonal to

remaining observations. The fastest growing location over this period, grew by 9 percentage points faster than average. By
1980-2000, only the top 1 percent of locations are growing faster than remaining, the fastest by about a percentage point.
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initial population. For intermediate aged locations (active for 40 to 79 years), regressions for the 1860-80

through 1980-2000 cross-sections admit coefficients no larger than 0.001 in absolute value. None of these

coefficients statistically differs from zero at the 0.05 level. For old locations (active 80 or more years), the

range of coefficient values is even closer to zero.

6 Concluding Remarks

This paper studies the long run spatial development of U.S. counties and metro areas between 1800 and 2000.

It shows that the often-documented orthogonality between population growth and initial population size —

Gibrat’s law — can be rejected across the entire two centuries. However, the economy gradually approaches

Gibrat’s law over time. This is especially true for counties that date back to the early 19th century. For

that subset of counties we can no longer reject Gibrat’s law in recent decades. A simple one-sector model

with entry and frictions can be shown to capture these dynamics. Our findings on Gibrat’s law have clear

implications for how the cross-sectional distribution of population evolved over time. We study the dynamics

of the emergence of Zipf’s law and the lognormal distribution of population in a companion paper.
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