
Spatial frictions

Kristian Behrens∗ Giordano Mion† Yasusada Murata‡ Jens Südekum§
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Abstract

The world is replete with spatial frictions. Shipping goods across cities entails trade fric-

tions. Commuting within cities causes urban frictions. How important are these frictions in

shaping the spatial economy? We develop and quantify a novel framework to address this

question at three different levels: Do spatial frictions matter for the city-size distribution? Do

they affect individual city sizes? Do they contribute to the productivity advantage of large

cities and the nature of competition in cities? The short answers are: no, yes, and it depends.
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1 Introduction

The world is replete with spatial frictions. Trade frictions for shipping goods across cities induce

consumers and firms to spatially concentrate to take advantage of large local markets. Yet, such

a concentration generates urban frictions within cities – people spend a lot of time on commuting

and pay high land rents. Economists have studied this fundamental trade-off for decades, analyzing

how firms and workers choose their locations depending on the magnitudes of – and changes in –

spatial frictions (Fujita et al., 1999; Fujita and Thisse, 2002). Still, little is known to date about

how important urban and trade frictions are in shaping the spatial economy. How would the US

economic geography look like if there were no spatial frictions? More specifically, we focus on the

following three questions: Do spatial frictions matter for the city-size distribution? Do they affect

individual city sizes? Do they contribute to the productivity advantage of large cities and the nature

of competition in cities?

To address these questions, we develop a novel multi-city general equilibrium model with urban

and trade frictions, where city sizes, productivity, and competition are all endogenous. Using data

for 356 US metropolitan statistical areas (msas) in 2007, we structurally estimate the model and

conduct two counterfactual experiments taking into account all market and spatial equilibrium

conditions. We first explore what would happen in a hypothetical world where commuting within

cities is costless. We then analyze the other counterfactual scenario where consumers face the

same trade costs for local and non-local products. By comparing the actual and the counterfactual

equilibria in both cases, we can assess the importance of urban and trade frictions for the city-size

distribution, individual city sizes, as well as productivity and competition.

How important are spatial frictions in shaping the spatial economy? First, we find that neither

type of frictions significantly affects the US city-size distribution. Even in a world without urban or

trade frictions, that distribution would follow the rank-size rule – also known as Zipf’s law – fairly

well. Second, we find that eliminating spatial frictions would change individual city sizes within

the stable distribution. Without urban frictions, large congested cities like New York or cities

close by (e.g., New Haven-Milford, CT) would gain population, while small isolated cities (e.g.,

Casper, WY) would lose population. In contrast, without trade frictions, large cities would shrink

compared to small cities as local market access no longer matters. In total, about 4 million people

would move in the former and around 10 million people would move in the latter case. Last, turning

to productivity and competition, eliminating trade frictions would lead to aggregate productivity

gains of 68% and markup reductions of 40%, both of which are unevenly distributed across msas.

Eliminating urban frictions would generate smaller productivity gains of less than 1%, but still lead

to a notable markup reduction of about 10%. In a nutshell, spatial frictions do not matter for the

city-size distribution, they do matter for individual city sizes, and they matter for productivity and

competition to a different extent depending on the type of frictions we consider.

Our findings have clear-cut implications for future spatial modeling. As far as the city-size

distribution is concerned, our results suggest that we can abstract from either urban or trade
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frictions without loss of generality. Hence, the recent modeling strategies taken by Gabaix (1999),

Eeckhout (2004), Duranton (2007) and Rossi-Hansberg and Wright (2007), where trade frictions

are assumed away, provide good approximations. However, to explain the rise and fall of individual

cities within the stable distribution requires a model that takes both types of spatial frictions into

account. Our results also suggest that such a model may be needed to understand productivity and

markup differences across cities.

What ingredients are required in our framework? Obviously, we need a system of cities as

in Henderson (1974), extended to include spatial frictions within and across cities. Both urban

and trade frictions are introduced in standard ways. For urban frictions, we use a monocentric city

model with commuting costs and land rents as in Alonso (1964) and Fujita (1989). To capture trade

frictions, we rely on a monopolistic competition model with trade costs as in the new trade theory

and the new economic geography (neg). However, workhorse constant elasticity of substitution

(ces) models such as Krugman (1980, 1991) do not account for the empirical facts that large cities

are more productive, more competitive, and allow for greater consumption diversity (see Syverson,

2004; Handbury and Weinstein, 2011).1 We incorporate all these aspects into a single framework

by building on recent developments in the heterogeneous firms literature. The two prominent

approaches, however, have limitations for our purpose: in Melitz (2003) the ces specification implies

constant markups so that spatial frictions do not matter for competition; whereas in Melitz and

Ottaviano (2008) the quasi-linear specification rules out income effects of demand for varieties and,

more importantly, imposes restrictions on feasible city size differences.2 The latter feature is not

well suited to urban settings where observed city sizes substantially differ and counterfactual city

sizes are a priori unknown.

To overcome those limitations, we develop a novel multi-city monopolistic competition framework

that allows for the joint determination of city sizes, productivities, markups, wages, consumption

diversity, and the number and size distribution of firms.3 City sizes are determined by aggregating

individual location decisions based on wages, rents, and prices, which in turn, are influenced by

spatial frictions and amenities. We model these location decisions by using discrete choice theory as

in McFadden (1974), and embed the choices into spatial equilibrium conditions following Tabuchi

and Thisse (2002) and Murata (2003).

Our multi-city framework features multiple margins of adjustment to shocks in spatial frictions.

Given the distribution of population, changes in spatial frictions directly affect the productivity

advantage of cities and the nature of competition in cities. Such changes in productivity and

1Early work by Krugman (1979, Section 3.3) sheds light on the latter two issues, using an aspatial model with

variable elasticity of substitution (ves). Ottaviano et al. (2002) develop a neg model featuring ves in which large

markets are more competitive and have lower markups.
2More specifically, the quasi-linear framework requires that market size differences are bounded to maintain an

equilibrium with incomplete specialization (see Melitz and Ottaviano, 2008, footnote 18).
3Holmes et al. (2010) also depart from the ces and quasi-linear frameworks and develop a two-region neg model

building on Bernard et al. (2003) to explore the issues of productivity and regional agglomeration from a theoretical

perspective.
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competition, in turn, induce changes in indirect utility differences across cities – through changes

in wages, rents, and prices – thereby affecting individual location decisions. Put differently, shocks

to spatial frictions are absorbed into: productivity and competition, as in the heterogeneous firms

literature; and population movements, as in the urban economics and neg literatures. Despite the

richness of our setting, we can derive clear comparative static results with two cities. We show

that, for a given population distribution, firms in the larger city face the higher wage and tougher

selection to offset their advantage of having the larger local market. At the same time, commuting

costs and land rents are higher in the larger city, which reduces its attractiveness. Ceteris paribus,

eliminating urban frictions favors agglomeration by increasing the number of people who choose

the larger city, while eliminating trade frictions induces dispersion by making the smaller city more

attractive.

With these qualitative results in hand, we quantify the multi-city model for the US. We first use

msa-level data on population, commuting time, and hours worked to compute city-specific measures

of urban frictions. Then we estimate a gravity equation for trade flows to obtain a measure of trade

frictions. The friction parameters thus obtained are used in the market equilibrium conditions to

back out unobserved msa-level technological possibilities. This allows us to structurally identify

the parameters of firms’ productivity distributions by matching predicted and observed firm size

distributions. Finally, we use the spatial equilibrium conditions to perfectly fit the observed US city-

size distribution. In doing so, we pin down the relative weight of economic variables and observed

amenities in determining individual location decisions, and back out measures of unobserved ameni-

ties at the msa level.4 We pay particular attention to model fit and verify that our framework can

reproduce several empirical features at the msa and firm levels. For example, it fairly well replicates

the observed patterns of aggregate land rents that are linked to urban frictions. It also replicates

reasonably well the distribution of average wages across msas and matches available micro-evidence

on the spatial structure of US firms’ shipments (Hummels and Hilberry, 2008; Holmes and Stevens,

2010) that are linked to trade frictions.

Our quantitative analysis contributes to both the recent empirical neg and urban economics

literatures. Although the former literature has made some important progress recently (e.g., Hanson,

2005; Redding and Sturm, 2008; Redding, 2010; Combes and Lafourcade, 2011), neg models have

still been confronted with data mostly in a reduced-form manner. It is fair to say that few attempts

have been made to conduct comprehensive counterfactual experiments. One notable exception in

the urban economics literature is the recent paper by Desmet and Rossi-Hansberg (2010), who

investigate the contribution of different wedges to the observed US city-size distribution. Unlike

the neg literature, however, their framework builds on a perfect competition model and abstracts

from trade between cities. Hence, it is not suited to investigate how trade frictions affect city sizes,

productivity, and competition.

The rest of the paper is organized as follows. In Section 2, we develop a single-city model

4Contrary to more conventional hedonic approaches (e.g., Roback, 1982; Albouy, 2008), unobserved amenities

and technological possibilities are obtained here from a model that encompasses both trade and urban frictions.
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to highlight some basic properties. In Section 3, we extend it to a multi-city framework and

provide comparative static results for the case with two cities. Section 4 describes our quantification

procedure and discusses the model fit. We then turn to our counterfactual experiments in Section 5.

Section 6 provides some extensions and discussion of our main results. Section 7 concludes.

2 Basic model: Single city

We consider a mass L > 0 of identical consumers/workers and a large amount of land that stretches

out on a two-dimensional featureless plane. Labor is the only factor of production and land is

used for housing only. Each agent consumes inelastically one unit of land, and the amount of land

available at each location is set to one. All firms in the city are located at an exogenously given

and dimensionless Central Business District (cbd). A monocentric city of size L then covers the

surface of a disk with radius x̄ ≡
√
L/π, with the cbd located in the middle of that disk and the

workers evenly distributed within it.

We introduce urban frictions in a standard way into our model by assuming that agents have

to commute to the cbd for work. In particular, we assume that each individual is endowed with h

hours of time, which is the gross labor supply per capita (in terms of hours) including commuting

time. Commuting costs are of the ‘iceberg’ type: the effective labor supply of a worker living at a

distance x ≤ x̄ from the cbd is given by

s(x) = he−θx, (1)

where θ ≥ 0 captures the efficiency loss due to commuting within the city.5 The total effective labor

supply at the cbd is then given by

S =

∫ x̄

0

2πxs(x)dx =
2πh

θ2

[
1−

(
1 + θ

√
L/π

)
e−θ

√
L/π
]
. (2)

In what follows, it will be useful to define the effective labor supply per capita as h ≡ S/L, which

is the average number of hours worked in the city. It directly follows from (2) that S is positive

and increasing in L, while h is decreasing in L. That is, given gross labor supply per capita h and

commuting technology θ > 0, the effective labor supply per capita is lower in a larger city. We can

further show that h is decreasing in θ, which captures urban frictions. With θ = 0, we would have

h = h regardless of the city size L.

Let w stand for the wage rate paid to the workers by the firms at the cbd. Then, the wage

income net of commuting costs earned by a worker residing at the city edge is ws(x̄) = whe−θx̄.

5We use an exponential rather than a linear iceberg commuting cost (as in, e.g., Murata and Thisse, 2005) since

the linear specification is subject to a boundary condition to ensure positive effective labor supply at each location

in the city. Keeping track of this condition becomes tedious with multiple cities and intercity movements of people.

The negative exponential specification has been used extensively in the literature (e.g., Lucas and Rossi-Hansberg,

2002), and the convexity of the efficiency loss with respect to distance from the cbd can also be justified in a modal

choice framework of intra-city transportation (e.g., Glaeser, 2008, pp.24–25).
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Because workers are identical, the wages net of commuting costs and land rents are equalized across

all locations in the city: ws(x)−R(x) = ws(x̄)−R(x̄), where R(x) is the land rent at a distance x

from the cbd. We normalize the opportunity cost of land at the urban fringe to zero, i.e., R(x̄) = 0.

The equilibrium land rent schedule in the city is then given by R∗(x) = w(e−θx − e−θx̄)h, which

yields the following aggregate land rents:

ALR =

∫ x̄

0

2πxR∗(x)dx =
2πwh

θ2

[
1−

(
1 + θ

√
L/π +

θ2L

2π

)
e−θ

√
L/π

]
. (3)

In what follows, we assume that each worker owns an equal share of the land in the city and has

an equal claim to firms’ profits. Accordingly, in addition to the wage net of commuting costs and

land rent, each worker receives an equal share of aggregate land rents ALR, and an equal share of

aggregate profits Π. The expenditure per capita is then given by E = whe−θ
√

L/π + (ALR+Π)/L.

2.1 Preferences and demands

We assume that there is a continuum of horizontally differentiated varieties available for consump-

tion. Denote by Ω the endogenously determined set of varieties, with measure N . All consumers

have identical preferences that display ‘love of variety’ and give rise to demands with variable elas-

ticity. Following Behrens and Murata (2007), the utility maximization problem of a representative

consumer is given by:

max
q(j), j∈Ω

U ≡
∫

Ω

[
1− e−αq(j)

]
dj s.t.

∫

Ω

p(j)q(j)dj = E, (4)

where p(j) > 0 and q(j) ≥ 0 stand for the price and the per capita consumption of variety j; and

α > 0 is a parameter. Solving (4) yields the following demand functions:

q(i) =
E

Np
− 1

α

{
ln

[
p(i)

Np

]
+ η

}
, ∀i ∈ Ω, (5)

where

p ≡ 1

N

∫

Ω

p(j)dj and η ≡ −
∫

Ω

ln

[
p(j)

Np

]
p(j)

Np
dj

denote the average price and the differential entropy of the price distribution, respectively.6 Since

marginal utility at zero consumption is bounded, the demand for a variety need not be positive.

Indeed, as can be seen from (5), the demand for variety i is positive if and only if its price is lower

than the reservation price pd. Formally,

q(i) > 0 ⇐⇒ p(i) < pd ≡ Np e
αE
Np

−η. (6)

6As shown in Reza (1994, pp.278–279), the differential entropy η takes its maximum value when there is no price

dispersion, i.e., p(i) = p for all i ∈ Ω. In that case, we would observe η = − ln(1/N) and thus q(i) = E/(Np)

by (5). Behrens and Murata (2007) entirely focus on such a symmetric case. By contrast, this paper considers firm

heterogeneity so that not only the average price p, but also the entire price distribution matters for the demand q(i).

The differential entropy η in (5) does capture the dispersion of the price distribution.
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Note that the reservation price pd is a function of the price aggregates p and η. Combining expres-

sions (5) and (6) allows us to rewrite the demand for variety i concisely as follows:

q(i) =
1

α
ln

[
pd

p(i)

]
. (7)

Observe that the price elasticity of demand for variety i is given by 1/[αq(i)]. Thus, if individuals

consume more of this variety (which is, e.g., the case when their expenditure increases), they become

less price sensitive. Last, since e−αq(i) = p(i)/pd, the indirect utility is given by

U = N −
∫

Ω

p(i)

pd
di = N

(
1− p

pd

)
. (8)

2.2 Technology and market structure

Each variety is produced by a single firm. The labor market is perfectly competitive so that all

firms at the cbd take the wage rate w as given. Prior to production, each firm enters the market by

engaging in research and development, which requires a fixed amount F of labor paid at the market

wage. Each firm i discovers its marginal labor requirement m(i) ≥ 0, expressed in terms of hours

of labor required per unit of output, only after making this irreversible entry decision. We assume

that m(i) is drawn from a common and known, continuously differentiable distribution G. Since F

is sunk, an entrant will stay in the market provided it can charge a price p(i) above marginal cost

m(i)w. Each surviving firm sets its price to maximize operating profits

π(i) = L
[
p(i)−m(i)w

]
q(i), (9)

where q(i) is given by (7). Since there is a continuum of firms, no individual firm has any impact

on the reservation price. All firms therefore take pd as given, so that the first-order conditions for

(operating) profit maximization are:

ln

[
pd

p(i)

]
=
p(i)−m(i)w

p(i)
, ∀i ∈ Ω. (10)

A price distribution satisfying (10) is called a price equilibrium. Equations (7) and (10) imply that

q(i) = (1/α)[1 − m(i)w/p(i)]. Thus, the minimum output is given by q(i) = 0 at p(i) = m(i)w

which, by (10), implies that p(i) = pd. The cutoff marginal labor requirement for surviving in the

market is then defined as md ≡ pd/w. All firms that draw m ≥ md choose not to produce, whereas

all firms with a draw m < md will operate in equilibrium. Hence, given a mass of entrants NE , only

a fraction G(md) of them will have positive output. The mass of surviving firms, which is identical

to the mass of varieties consumed in the single city case, is then given by N = NEG(md).

Since firms differ by their marginal labor requirement only, we can write down all firm-level

variables in terms of m. Solving (10) by using the Lambert W function, defined as ϕ = W (ϕ)eW (ϕ),
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the profit-maximizing prices and quantities, as well as operating profits, can be expressed as follows:7

p(m) =
mw

W
, q(m) =

1

α
(1−W ), π(m) =

Lmw

α

(
W−1 +W − 2

)
, (11)

where we suppress the argument em/md of W to alleviate notation. It is readily verified that

W ′ > 0 for all non-negative arguments and that W (0) = 0 and W (e) = 1. Hence, 0 ≤ W ≤ 1 if

0 ≤ m ≤ md. The expressions in (11) then show that a firm with a draw md charges a price equal to

marginal cost, faces zero demand, and earns zero operating profit. Since W ′ > 0, we readily obtain

∂p(m)/∂m > 0, ∂q(m)/∂m < 0 and ∂π(m)/∂m < 0. In words, firms with better productivity draws

charge lower prices, sell larger quantities, and earn higher operating profits as in Melitz (2003). Yet,

our specification with variable demand elasticity also features higher markups for more productive

firms. Indeed,

Λ(m) ≡ p(m)

mw
=

1

W
(12)

implies that ∂Λ(m)/∂m < 0. Unlike Melitz and Ottaviano (2008), who use quasi-linear prefer-

ences, we incorporate this feature into a full-fledged general equilibrium model with income effects

for varieties and without restrictions on feasible city size differences. Since ∂W/∂md < 0, firm-

level markups are also smaller in tougher markets, which is in line with firm-level evidence (see

Syverson, 2004).

2.3 Equilibrium

The equilibrium conditions in the single city case consist of zero expected profits and labor market

clearing. These two conditions can be solved for the cutoff md and the mass of entrants NE . Using

expression (9), the zero expected profit condition for each firm is given by:

L

∫ md

0

[p(m)−mw] q(m)dG(m) = Fw. (13)

This expression, combined with (11), can be rewritten as a function of md only:

L

α

∫ md

0

m
(
W−1 +W − 2

)
dG(m) = F, (14)

which yields a unique equilibrium cutoff because the left-hand side of (14) is strictly increasing in

md from 0 to ∞ (see Appendix A.1). Furthermore, the labor market clearing condition is given by:8

NE

[
L

∫ md

0

mq(m)dG(m) + F

]
= S (15)

7Further details about the Lambert W function, the technical properties of which are key to making our model

tractable, can be found in Appendix A.2 of Behrens et al. (2009).

8From (13) and NE
∫
m

d

0 p(m)q(m)dG(m) = E, we obtain EL/(wNE) = L
∫
m

d

0 mq(m)dG(m) + F which, together

with (15), yields E = (S/L)w = hw in equilibrium. The expenditure of the representative consumer thus depends

only on the effective labor supply per capita and the wage rate.
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which, combined with (11), can be rewritten as a function of md and NE :

NE

[
L

α

∫ md

0

m (1−W ) dG(m) + F

]
= S. (16)

Given the equilibrium cutoff md from (14), equation (16) can be uniquely solved for NE . As in

Melitz and Ottaviano (2008) and many other existing studies, we choose a particular distribution

function for firms’ productivity draws, 1/m, namely a Pareto distribution:

G(m) =
( m

mmax

)k
,

where mmax > 0 and k ≥ 1 are the upper bound and the shape parameter, respectively. This

distribution is useful for deriving analytical results and taking the model to the data. In particular,

we obtain the following closed-form solutions for the equilibrium cutoff and the mass of entrants:

md =

(
µmax

L

) 1
k+1

and NE =
κ2

κ1 + κ2

S

F
, (17)

where κ1 and κ2 are positive constants that solely depend on k (see Appendices B.1 and B.2 for

details). The term µmax ≡
[
αF (mmax)k

]
/κ2 can be interpreted as an inverse measure of technological

possibilities : the lower is the fixed labor requirement for entry, F , or the lower is the upper bound,

mmax, the lower is µmax.

How do population size and technological possibilities affect entry and selection? Recall from

(2) that the total effective labor supply, S, is increasing in population L. The second expression in

(17) then shows that there are more entrants in a larger city. The first expression in (17), in turn,

shows that a larger L or a smaller µmax entail a smaller cutoff and, thus, a lower survival probability

G(md) of entrants. This tougher selection maps into higher average productivity, 1/m, since m ≡
(1/N)

∫
Ω
m(i)di = [k/(k + 1)]md under a Pareto distribution. Observe that for now in our model,

larger cities are more productive because of tougher selection, but not because of technological

externalities associated with agglomeration. In line with an abundant empirical literature (e.g.,

Rosenthal and Strange, 2004), we extend our framework to allow for such agglomeration economies

in Section 6. All of our theoretical and quantitative key insights are robust to that extension.

We can also study the mass of surviving firms and the average markup faced by the consumers

in the city. Using N = NEG(md), the mass of surviving firms is equal to

N =
α

κ1 + κ2

h

md
=

αh

κ1 + κ2

(
L

µmax

) 1
k+1

. (18)

Since those firms are heterogeneous and have different markups and market shares, the simple

(unweighted) average of markups is not an adequate measure of consumers’ exposure to market

power. Using (11) and (12), we hence define the (expenditure share) weighted average of firm-level

markups as follows:

Λ ≡ 1

G(md)

∫ md

0

p(m)q(m)

E
Λ(m)dG(m) =

κ3
α

md

h
, (19)
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where κ3 is a positive constant that solely depends on k (see Appendix B.3).9 Note that the weighted

average of markups is proportional to the cutoff. It thus follows from (18) and (19) that our model

displays pro-competitive effects since Λ = [κ3/(κ1 + κ2)](1/N) decreases with the mass of firms

competing in the city.

Furthermore, we show in Appendix A.2 that the indirect utility can be expressed as

U = α

[
1

(k + 1)(κ1 + κ2)
− 1

]
h

md
=

[
1

(k + 1)(κ1 + κ2)
− 1

]
κ3

Λ
, (20)

where the term in square brackets is, by construction of the utility function, positive for all k ≥ 1.

Alternatively, the indirect utility can be rewritten as U = [1/(k + 1)− (κ1 + κ2)]N . Hence, as can

be seen from expressions (17)–(20), a city with better technological possibilities allows for higher

utility because of tougher selection, tougher competition, and greater consumption diversity.

Finally, the impact of city size on consumption diversity, on the weighted average of markups,

and on welfare can be established as follows. Using (2) and (17), we can rewrite indirect utility as

U = α

[
1

(k + 1)(κ1 + κ2)
− 1

]{
2πh

θ2L

[
1−

(
1 + θ

√
L/π

)
e−θ

√
L/π
]}( L

µmax

) 1
k+1

. (21)

The term in braces in (21) equals the effective labor supply per capita, h = S/L, which decreases

with L. The last term in (21) captures the cutoff productivity level, 1/md, which increases with L.

The net effect of an increase in L on the indirect utility U is thus ambiguous, highlighting the

trade-off between a dispersion force (urban frictions) and an agglomeration force (tougher firm

selection) inherent in our model. Yet, it can be shown that U is single-peaked with respect to L

(see Appendix A.2). Since the indirect utility is proportional to N , it immediately follows that

consumption diversity also exhibits a ∩-shaped pattern, while the weighted average of markups Λ

is ∪-shaped with respect to L.

3 Urban system: Multiple cities

We now turn to the case with multiple cities and endogenous location decisions. The timing of

events is as follows. First, workers/consumers choose their locations. Second, firm entry, selection

and production take place.10 We start the analysis by describing preferences and technology, as

well as trade frictions, for this urban system with K asymmetric cities. We then derive the mar-

ket equilibrium conditions, given city sizes, and define the spatial equilibrium where individuals

endogenously choose their locations. Finally, we analyze the two-city case to build intuition for

our counterfactual experiments. The internal structure of cities is analogous to that in the previ-

ous section, but cities may differ in their commuting technologies θr and gross labor supplies hr.

Preferences and technology are also analogous, and we indicate changes wherever needed.

9Recent work by Feenstra and Weinstein (2010) uses a similar (expenditure share) weighted average of markups

in a translog framework to quantify the impacts of international trade on the US price level.
10This timing simplifies our model because we need not specify which types of firms relocate as workers move

across cities. The spatial sorting of firms or workers is not the topic of the present paper.

10



3.1 Preferences and demands

Let psr(i) and qsr(i) denote the price and the per capita consumption of variety i produced in city s

and consumed in city r. The utility maximization problem of a consumer in city r is then given by:

max
qsr(j), j∈Ωsr

Ur ≡
∑

s

∫

Ωsr

[
1− e−αqsr(j)

]
dj s.t.

∑

s

∫

Ωsr

psr(j)qsr(j)dj = Er, (22)

where Ωsr denotes the set of varieties produced in city s and consumed in city r.11 It is readily

verified that the demand functions are given as follows:

qsr(i) =
Er

N c
rpr

− 1

α

{
ln

[
psr(i)

N c
rpr

]
+ ηr

}
, ∀i ∈ Ωsr,

where N c
r is the mass of varieties consumed in city r, and

pr ≡
1

N c
r

∑

s

∫

Ωsr

psr(j)dj and ηr ≡ −
∑

s

∫

Ωsr

ln

[
psr(j)

N c
rpr

]
psr(j)

N c
rpr

dj

denote the (unweighted) average price and the differential entropy of the price distribution of all

varieties consumed in city r, respectively. As in the case of a single city, the demand for a locally

produced variety i (resp., a non-locally produced variety j) is positive if and only if the price of

variety i (resp., of variety j) is lower than the reservation price pdr . Formally,

qrr(i) > 0 ⇐⇒ prr(i) < pdr and qsr(j) > 0 ⇐⇒ psr(j) < pdr ,

where pdr ≡ N c
rpre

αEr/(Nc
r pr)−ηr is a function of the price aggregates pr and ηr. The demands for

local and non-local varieties can then be concisely expressed as follows:

qrr(i) =
1

α
ln

[
pdr

prr(i)

]
and qsr(j) =

1

α
ln

[
pdr

psr(j)

]
. (23)

Since e−αqsr(j) = psr(j)/p
d
r , the indirect utility is given by

Ur = N c
r −

∑

s

∫

Ωsr

psr(j)

pdr
dj = N c

r

(
1− pr

pdr

)
. (24)

3.2 Technology and market structure

We consider segmented markets, where resale or third-party arbitrage are sufficiently costly, and

assume that firms are free to price discriminate between markets. Firms in city r independently

draw their value of m from a city-specific distribution Gr. We introduce trade frictions into our

11We assume that land is collectively owned in each city, and that every resident has an equal claim to aggregate

land rents in that city. As firms make zero aggregate profits, this implies that Er = (Sr/Lr)wr = hrwr.
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model by assuming that shipments from r to s are subject to costs τrs > 1 for all r and s, which

firms incur in terms of labor.12 The operating profit of firm i in r is then given by:

πr(i) =
∑

s

πrs(i) =
∑

s

Lsqrs(i) [prs(i)− τrsmr(i)wr] . (25)

Each firm maximizes (25) with respect to its prices prs(i) separately. Since it has no impact on the

price aggregates and on the wages, the first-order conditions are given by:

ln

[
pds

prs(i)

]
=
prs(i)− τrsmr(i)wr

prs(i)
, ∀i ∈ Ωrs. (26)

Equations (23) and (26) imply that qrs(i) = (1/α)[1−τrsmr(i)wr/prs(i)], which shows that qrs(i) = 0

at prs(i) = τrsmr(i)wr. It then follows from (26) that prs(i) = pds. Hence, a firm located in r with

draw mx
rs ≡ pds/(τrswr) is just indifferent between selling and not selling in city s. All firms in r with

draws below mx
rs are productive enough to sell to city s.13 In what follows, we refer to mx

ss ≡ md
s

as the internal cutoff in city s, whereas mx
rs with r 6= s is the external cutoff for selling to city s

when located in city r. External and internal cutoffs are linked as follows:

mx
rs =

τss
τrs

ws

wr
md

s . (27)

Expression (27) reveals the key relationship between trade costs, wages, and productivity. In par-

ticular, it shows how trade costs and wage differences affect firms’ ability to break into market s.

When wages are equalized (wr = ws) and local trade is less costly than external trade (τss < τrs),

all external cutoffs must fall short of the internal cutoffs. Breaking into market s is then always

harder for firms in r 6= s than for firms in s, which is the standard case considered in the literature

(e.g., Melitz, 2003; Melitz and Ottaviano, 2008). However, consider a case where ws > wr. In that

case, firms from the low wage city r may have a cost advantage in selling to the high wage market s

compared to the local competitors there. Surviving in market s is then easier for firms selling from

r than for local firms in s, i.e., mx
rs > md

s. More generally, in the presence of wage differences and

trade costs, the usual ranking mx
rs < md

s prevails only when τssws < τrswr.

Given a mass of entrants NE
r and external cutoffs mx

rs, only N
p
r = NE

r Gr (maxs {mx
rs}) firms

survive in city r, namely those which are productive enough to sell at least in one market (which

need not be the local market in our model because of wage differences across cities). The mass of

varieties consumed in city r is given by

N c
r =

∑

s

NE
s Gs(m

x
sr), (28)

12We allow for internal trade costs τrr > 1 in order to capture the empirical fact that firms also incur shipping and

distribution costs in their local markets.
13Unlike in the ces model by Melitz (2003), we need not assume fixed costs for ‘exporting’ to explain why some

firms do not ship to some cities. The reason is that, for each variety, marginal utility at zero consumption is finite in

our model. While fixed costs of exporting are certainly pervasive in an international context, they appear much less

plausible at the city or the zip code level within a country (also see Hillberry and Hummels, 2008).
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which is the sum of all firms that are productive enough to serve market r.

As in the case of a single city, the first-order conditions (26) can be solved by using the Lam-

bertW function. The profit-maximizing prices and quantities, as well as operating profits, are given

by:

prs(m) =
τrsmwr

W
, qrs(m) =

1

α
(1−W ) , πrs =

Lsτrsmwr

α
(W−1 +W − 2), (29)

where we suppress the argument eτrsmwr/p
d
s of W . It can be readily verified that more productive

firms again charge lower prices, sell larger quantities, and earn higher operating profits than less

productive firms. Markups, defined as Λrs(m) ≡ prs(m)/(τrsmwr) = 1/W , are also higher the

smaller m is.

3.3 Equilibrium

3.3.1 Market equilibrium

We first examine the market equilibrium for given population sizes in the general case with K asym-

metric cities. We assume that productivity draws 1/m follow Pareto distributions with identical

shape parameters k ≥ 1, but the upper bounds are allowed to vary across cities, i.e., Gr(m) =

(m/mmax
r )k. Given that assumption, the equilibrium conditions – zero expected profits, labor mar-

ket clearing, and the trade balance – are as follows (see Appendix C for details). First, labor market

clearing requires that

NE
r

[
κ1

α (mmax
r )k

∑

s

Lsτrs

(
τss
τrs

ws

wr
md

s

)k+1

+ F

]
= Sr. (30)

Second, zero expected profits imply that

µmax
r =

∑

s

Lsτrs

(
τss
τrs

ws

wr
md

s

)k+1

, (31)

where µmax
r ≡ [αF (mmax

r )k]/κ2 denotes city r’s technological possibilities. Last, balanced trade

requires that

NE
r wr

(mmax
r )k

∑

s 6=r

Lsτrs

(
τss
τrs

ws

wr
md

s

)k+1

= Lr

∑

s 6=r

τsr
NE

s ws

(mmax
s )k

(
τrr
τsr

wr

ws
md

r

)k+1

. (32)

The 3×K conditions (30)–(32) depend on 3×K unknowns: the wages, wr, the masses of entrants,

NE
r , and the internal cutoffs, md

r . The external cutoffs, mx
rs, can then be recovered from (27).

Combining (30) and (31) immediately shows that

NE
r =

κ2
κ1 + κ2

Sr

F
. (33)
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Thus, the mass of entrants in city r still depends positively on that city’s effective labor supply Sr

and negatively on the fixed labor requirement F . Adding the term in r that is missing on both

sides of (32), and using (31) and (33), we obtain the following equilibrium relationship:

hr

(md
r)

k+1
=
∑

s

Ssτrr

(
τrr
τsr

wr

ws

)k
1

µmax
s

. (34)

Expressions (31) and (34) jointly summarize how wages, technological possibilites, cutoffs, trade

costs, population sizes, and effective labor supplies are related in the market equilibrium.

Using the foregoing expressions, we can show that the mass of varieties consumed in a city is

inversely proportional to the internal cutoff in that city (see Appendix A.3 for the derivation):

N c
r =

α

(κ1 + κ2)τrr

hr
md

r

. (35)

Furthermore, the (expenditure share) weighted average of markups that consumers face in city r

can be expressed as follows (see Appendix A.4 for the derivation):

Λr ≡

∑
sN

E
s

∫ mx
sr

0

psr(m)qsr(m)

Er

Λsr(m)dGs(m)
∑

sN
E
s Gs(mx

sr)
=
κ3τrr
α

md
r

hr
. (36)

Hence, it immediately follows from (35) and (36) that there are pro-competitive effects, since Λr

decreases with the mass N c
r of firms competing in city r as Λr = [κ3/(κ1 + κ2)](1/N

c
r ). Last, we

show in Appendix A.5 that the indirect utility is given by

Ur =
α

τrr

[
1

(k + 1)(κ1 + κ2)
− 1

]
hr
md

r

=

[
1

(k + 1)(κ1 + κ2)
− 1

]
κ3

Λr

, (37)

which implies that greater effective labor supply per capita, tougher selection, and a lower weighted

average of markups in city r translate into higher welfare. Alternatively, the indirect utility can be

rewritten as Ur = [1/(k+1)− (κ1+κ2)]N
c
r , i.e., it is proportional to the mass of varieties consumed

in a city.

3.3.2 Spatial equilibrium

We now introduce city-specific amenities and taste heterogeneity in residential location into our

model. This is done for two reasons. First, individuals in reality choose their location not only

based on wages, prices and productivities that result from market interactions, but also based on

non-market features such as amenities (e.g., climate or landscape). Second, individuals do not

necessarily react in the same way to regional gaps in wages and cost-of-living (Tabuchi and Thisse,

2002; Murata, 2003). Such taste heterogeneity tends to offset the extreme outcome that often

arises in typical neg models, namely that all mobile economic activity concentrates in a single

city. When we take our model to data, taste heterogeneity is thus useful for capturing an observed

non-degenerate equilibrium distribution of city sizes.
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We assume that the location choice of an individual ℓ is described by linear random utility as

V ℓ
r = Ur+Ar+ξ

ℓ
r, where Ur is given by (37) and Ar subsumes city-specific amenities that are equally

valued by all individuals. For the empirical implementation, we assume that Ar ≡ A(Ao
r, A

u
r ), where

Ao
r refers to observed amenities such as costal location and Au

r to the unobserved part. Finally,

the random variable ξℓr captures idiosyncratic taste differences in residential location. Following

McFadden (1974), we assume that the ξℓr are i.i.d. across individuals and cities according to a

double exponential distribution with zero mean and variance equal to π2β2/6, where β is a positive

constant. Since β has a positive relationship with variance, the larger the value of β, the more

heterogeneous are the workers’ attachments to each city. Given the population distribution, an

individual’s probability of choosing city r can then be expressed as a logit form:

Pr = Pr

(
V ℓ
r > max

s 6=r
V ℓ
s

)
=

exp((Ur + Ar)/β)∑K
s=1 exp((Us + As)/β)

. (38)

If β → 0, people choose their location based only on Ur +Ar. This corresponds to the case without

taste heterogeneity, i.e., they choose a city with the highest Ur + Ar with probability one. By

contrast, if β → ∞, individuals choose their location with equal probability 1/K. In that case,

taste for residential location is extremely heterogeneous, so that Ur + Ar does not affect location

decisions at all. We finally define a spatial equilibrium as a city-size distribution satisfying

Pr =
Lr

L
, ∀r. (39)

In words, the choice probability of each city is equal to the population share of that city.

3.4 Some analytical results

To build intuition for our counterfactual experiments, we now illustrate how spatial frictions affect

the fundamental trade-off between agglomeration and dispersion forces in the special case with two

cities. We assume that trade costs are symmetric (τ12 = τ21 = τ and τ11 = τ22 = t), and that

intra-city trade is less costly than inter-city trade (t ≤ τ). For given city sizes L1 and L2, the

market equilibrium is given by a system of three equations (31)–(33) with three unknowns (the two

internal cutoffs md
1 and md

2, and the relative wage ω ≡ w1/w2) as follows:

µmax
1 = L1t

(
md

1

)k+1
+ L2τ

(
t

τ

1

ω
md

2

)k+1

(40)

µmax
2 = L2t

(
md

2

)k+1
+ L1τ

(
t

τ
ωmd

1

)k+1

(41)

ω2k+1 =
ρ

σ

(
md

2

md
1

)k+1

, (42)

where ρ ≡ µmax
2 /µmax

1 and σ ≡ h2/h1 = (S2/L2)/(S1/L1). When t < τ , equations (40) and (41) can

be uniquely solved for the cutoffs as a function of ω:

(md
1)

k+1 =
µmax
1

L1t

1− ρ(t/τ)kω−(k+1)

1− (t/τ)2k
and (md

2)
k+1 =

µmax
2

L2t

1− ρ−1(t/τ)kωk+1

1− (t/τ)2k
, (43)
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and substituting the cutoffs (43) into (42) yields, after some simplification, the following expression:

LHS ≡ ωk = ρ
S1

S2

ρ− (t/τ)k ωk+1

ωk+1 − ρ (t/τ)k
≡ RHS. (44)

When t < τ , the RHS of (44) is non-negative if and only if ω < ω < ω, where ω ≡ ρ1/(k+1) (t/τ)k/(k+1)

and ω ≡ ρ1/(k+1) (τ/t)k/(k+1). Furthermore, the RHS is strictly decreasing in ω ∈ (ω, ω) with

limω→ω+RHS = ∞ and limω→ω−RHS = 0. Since the LHS of (44) is strictly increasing in ω ∈ (0,∞),

there exists a unique equilibrium relative wage ω∗ ∈ (ω, ω).

Consider two cities that differ in size but are identical with respect to their gross labor supplies,

commuting technologies, and technological possibilities (h1 = h2 = h, θ1 = θ2 = θ, and ρ = 1).

Then, the larger city has the higher wage and the lower cutoff. To see this, observe first that

L1/L2 = 1 implies S1/S2 = 1, so that the unique equilibrium wage is ω∗ = 1 by (44). Now

suppose that city 1 is larger than city 2, i.e., L1/L2 > 1, which implies S1/S2 > 1. Then, the

equilibrium relative wage satisfies ω∗ > 1 because an increase in S1/S2 raises the RHS of (44)

without affecting the LHS. Finally, expression (42), together with the foregoing assumption, yields

ω2k+1 = (1/σ)
(
md

2/m
d
1

)k+1
. As L1 > L2 implies ω > 1 and σ > 1 (recall that h ≡ S/L is decreasing

in L), it follows that md
1 < md

2. Hence, the larger city has the lower cutoff. The intuition is that

the larger city has an advantage in terms of the larger local market due to trade frictions, and that

this advantage must be offset by the higher wage and tougher selection.

As can be seen from (37), the higher productivity (lower cutoff) constitutes an agglomeration

force as it raises indirect utility in the larger city. Yet, the larger city also has lower effective

labor supply per capita hr = Sr/Lr due to urban frictions, which negatively affects indirect utility,

thus representing a dispersion force.14 In the case of two cities, the choice probabilities (38) that

constitute the spatial equilibrium can be rewritten as

P1 =
exp(Υ/β)

exp(Υ/β) + 1
and P2 =

1

exp(Υ/β) + 1
,

where Υ ≡ (U1 −U2) + (A1 −A2). Hence, P1 is increasing and P2 is decreasing in Υ. Plugging (37)

into the definition of Υ, we readily obtain

Υ =
(α
t

)[ 1

(k + 1)(κ1 + κ2)
− 1

](
h1
md

1

− h2
md

2

)
+ (A1 − A2). (45)

In what follows, we focus on the case where L1 > L2 and A1 = A2. Then, by (39) the spatial

equilibrium is such that P1 > P2, which implies Υ > 0 and h1/m
d
1 > h2/m

d
2 by (45). The larger city

then has greater consumption diversity according to (35) and a lower average markup according to

(36) than the smaller city.

14Recall that the gross labor supply, hr, is exogenous in our model. When quantifying the model in Section 4,

we use data on hr across msas, which shows that hr is higher in big cities like New York. In this subsection, we

abstract from such an “urban rat race” that would work against the effect of urban frictions by raising the effective

labor supply per capita, hr, in the larger city. A better commuting technology (lower θr) in the larger city would

also work in the same direction.
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3.4.1 No urban frictions

Our first counterfactual experiment will be to eliminate urban frictions while leaving trade frictions

unchanged. This is equivalent to setting θ = 0, holding τ and t constant. In what follows, we

consider – starting from the initial spatial equilibrium – how Υ is affected by such a change. This

allows us to study if the elimination of urban frictions involves more agglomeration (larger P1)

or more dispersion (smaller P1). Let Υ̃ be the value of Υ in the counterfactual scenario, keeping

city sizes fixed at their initial levels. Other counterfactual values are also denoted with a tilde.

Observing that h̃1 = h̃2 = h when θ = 0, we have

sign
{
Υ̃−Υ

}
= sign

{
1

m̃d
1

(h− h1)−
1

m̃d
2

(h− h2) + h1

(
1

m̃d
1

− 1

md
1

)
− h2

(
1

m̃d
2

− 1

md
2

)}
, (46)

where the first two terms stand for the direct effects of eliminating urban frictions and the second

two terms capture the indirect effects through the cutoffs. In the initial situation where θ > 0, we

know that h1 < h2 < h as urban frictions are greater in the larger city. We also know that md
1 < md

2

holds even without urban frictions as L1 > L2, so that m̃d
1 < m̃d

2. Hence, the first positive term

always dominates the second negative term, thus showing that the direct effects favor the large city

by increasing the probability P1 of choosing city 1. However, the indirect effects through the cutoffs

work against this. To see this, notice that the reduction in θ from any given positive value to zero

raises S1/S2 (see Appendix A.6) and thus the relative wage ω by shifting up the RHS of (44). We

thus observe wage divergence. The expressions in (43) then show that the cutoff increases in the

large city to offset the cost disadvantage, whereas it decreases in the small city. In other words,

we have md
1 < m̃d

1 < m̃d
2 < md

2. Hence, both the third and fourth terms are negative, so that the

indirect effects through the cutoffs work against agglomeration.

If the direct effects dominate the indirect effects, we have Υ̃ > Υ so that P1 increases and

the large city becomes even larger as urban frictions are eliminated. The increase in population

then leads to a productivity gain, which may offset the productivity drop at a given population

size (md
1 < m̃d

1). As we show below, such a pattern indeed emerges in the quantified multi-city

model (see Figures 5, 7 and 12): Big cities like New York become even larger. Given the initial

population, productivity goes down in New York while it goes up once we take population changes

into account (see also Section 6.1 below). By the same argument, small cities may end up with a

lower productivity due to the loss in population. Hence, the elimination of urban frictions makes

the overall productivity change ambiguous.

3.4.2 No trade frictions

Our second counterfactual experiment will be to eliminate trade frictions while leaving urban fric-

tions unchanged. More specifically, we consider a scenario where consumers face the same trade

costs for local and non-local varieties. This is equivalent to setting τ = t, holding θ constant. As

before, let Υ̃ be the value of Υ in the counterfactual scenario, while keeping city sizes fixed at the
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initial level. Other counterfactual values, given the initial population distribution, are also denoted

with a tilde. Noting that h1 and h2 remain constant, the change in Υ can now be written as

sign
{
Υ̃−Υ

}
= sign

{
h1

(
1

m̃d
1

− 1

md
1

)
− h2

(
1

m̃d
2

− 1

md
2

)}
. (47)

It can be shown that now both cutoffs decrease for given population sizes, i.e., m̃d
1 < md

1 and

m̃d
2 < md

2 (see Appendix A.6). Both cities therefore experience a productivity gain. The first term

in the square brackets in (47) is thus positive, while the second term is negative. We can show that,

when switching to a world without trade frictions, Υ̃ < Υ holds if ρ1/(k+1) ≤ σ (see Appendix A.6).

In other words, the large city becomes smaller if the two cities are initially not too different in terms

of their technological possibilities. In contrast, the small city becomes larger and, consequently,

experiences a further productivity gain. We show below that these analytical results are consistent

with the pattern that emerges in our quantified multi-city model (see Figures 9 and 11): small cities

tend to gain population, and they experience stronger gains in productivity than large cities.15

4 Quantification

We now take our multi-city model to the data by estimating or calibrating its parameters (see

Appendix D for the data description). Our procedure can be summarized in the following 6 steps:

1. Using the definition of total effective labor supply and data on commuting time, hours worked,

and city size at the msa level, we obtain the city-specific commuting technology parameters

θ̂r that constitute urban frictions.

2. Using the specification τrs ≡ dγrs, where drs is the distance from r to s, we estimate a gravity

equation that relates the value of bilateral trade flows to distance. For a given value of the

Pareto shape parameter k, we obtain the distance elasticity γ̂ that constitutes trade frictions.

3. The estimated distance elasticity, together with data on labor supply, value added per worker,

and city size, allows us to back out the set of city-specific technological possibilities µ̂max
r and

wages ŵr that are consistent with the market equilibrium conditions.

4. Using the set of city-specific technological possibilities thus obtained, we draw a large sample

of firms from within the model to compute the difference between the simulated and observed

establishment size distributions.

15Other two-region neg models with commuting costs (Tabuchi, 1998; Murata and Thisse, 2005) would come

to qualitatively similar conclusions about how falling transport or commuting costs affect the spatial equilibrium.

Helpman (1998) considers a fixed supply of land instead of commuting, but his model would also display a similar

pattern as falling transport costs are dispersive, while greater abundance of land is agglomerative. Though useful for

illustrative purposes, such two-region examples do not deliver a sense of magnitude about the quantitative importance

of spatial frictions in practice, however. They are also silent on productivity.
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5. Iterating through steps 2 to 4, we search over the parameter space to find the value of the

Pareto shape parameter k that minimizes the sum of squared differences between the simulated

and observed establishment size distributions.

6. Using the spatial equilibrium conditions, the expression of indirect utility, and data on natural

amenities, we obtain a measure of unobservable consumption amenities and the relative weight

of economic factors and amenities that are consistent with the observed city-size distribution.

In what follows, we explain each step in more detail.

4.1 Urban frictions θr

To obtain the city-specific commuting technology parameters θ̂r that constitute urban frictions, we

rewrite equation (2) as

Lr
hr

hr
=

2π

θ2r

[
1−

(
1 + θr

√
Lr/π

)
e−θr

√
Lr/π

]
, (48)

where we use Sr = Lrhr. We compute hr as the average number of hours worked per week in

msa r. The gross labor supply per capita, hr, which is the endowment of hours available for work

and commuting, is constructed as the sum of hr and hours per week spent by workers in each msa

for travel-to-work commuting in 2007. Given hr, hr, as well as city size Lr, the above equation can

be uniquely solved for the city-specific commuting parameter θ̂r. Table 1 provides their values for

the 356 msas, which are further discussed in Section 4.6.

4.2 Trade frictions τrs

To estimate the distance elasticity γ̂ that constitutes trade frictions, we consider the value of sales

from r to s:

Xrs = NE
r Ls

∫ mx
rs

0

prs(m)qrs(m)dGr(m). (49)

Using (27), (29), (33), and the result from Appendix B.4, we then obtain the gravity equation

Xrs = SrLsτ
−k
rs τ

k+1
ss (ws/wr)

k+1wr

(
md

s

)k+1
(µmax

r )−1 .

Turning to the specification of trade costs τrs, we stick to standard practice and assume that

τrs ≡ dγrs, where drs stands for the distance from r to s (measured in kilometers and computed using

the great circle formula). The gravity equation can then be rewritten in log-linear stochastic form

as

lnXrs = const.− kγ ln drs + I0rs + ζ1r + ζ2s + εrs, (50)

where all terms specific to the origin and the destination are collapsed into fixed effects ζ1r and

ζ2s , where I
0
rs is a zero-flow dummy, and εrs is an error term with the usual properties for ols
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consistency.16 Using aggregate bilateral trade flows Xrs in 2007 for the 48 contiguous US states

that cover all msas used in the subsequent analysis, we estimate the gravity equation on state-to-

state trade flows.17 Given a value of k, we thus obtain an estimate of the distance elasticity γ̂.

4.3 Market equilibrium conditions (wr, µ
max
r )

We next turn to the market equilibrium conditions. Observe that expressions (31) and (34) can be

rewritten as:

µmax
r =

∑

s

Lsτrs

(
md

s

τss
τrs

ws

wr

)k+1

(51)

Sr

Lr

1

(md
r)

k+1
=

∑

s

Ssτrr

(
τsr
τrr

ws

wr

)−k
1

µmax
s

. (52)

Ideally, we would like to use data on technological possibilities µmax
r to solve for the wages and

cutoffs. Yet, µmax
r is unobservable. We thus solve for wages and technological possibilities (ŵr, µ̂

max
r )

by using the values of md
r that are obtained as follows. Under the Pareto distribution, we have

(1/mr) = [k/(k + 1)](1/md
r), where 1/mr is the average productivity in msa r. The latter can be

computed as GDP per employee, using data on GDP of msa r and the total number of hours worked

in that msa (hours worked per week times total employment). Given an estimate of 1/mr and the

value of k, we can compute the cutoffs md
r . Using the value of k, the cutoffs md

r , the city-specific

commuting technologies θ̂r, the observed msa populations Lr, as well as trade frictions τ̂rs = dγ̂rs,

we can solve (51) and (52) for the wages and unobserved technological possibilities (ŵr, µ̂
max
r ) that

are consistent with the market equilibrium. We compare in Section 4.7 the predicted wages ŵr with

observed wages at the msa level to assess how well our model fits the data.

4.4 Firm size distribution and Pareto shape parameter k

The quantification procedure described thus far has assumed a given value of the shape parameter k.

In order to estimate k structurally, we proceed as follows. First, given a value of k, we can compute

trade frictions τ̂rs and the wages and cutoffs (ŵr, µ̂
max
r ) as described in Sections 4.2 and 4.3. This,

together with the internal cutoff md
r computed from data as described in Section 4.3, yields the

16There are 179 ‘zero flows’ out of 2,304 in the data, i.e., 7.7% of the sample. We control for them by using a

standard dummy-variable approach, where I0
rs

takes value 1 if Xrs = 0 and 0 otherwise. Note that these flows are

not true zeros as we exclude Alaska, Hawaii, and Washington DC (see the 2007 Commodity Flow Survey (cfs) data).

Rather, they are unreported observations because of lack of statistical precision, so that a Heckman-type correction

procedure is not warranted.
17We work at the state level since msa trade flows from the cfs public files can only be meaningfully exploited

for a relatively small sample of large ‘cfs regions’. Duranton et al. (2011, p.10) work with aggregate trade flows for

“65 cfs regions organized around the core county of a us metropolitan area” to estimate the distance elasticity. We

used their estimate as a robustness check, and our results are little sensitive.
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external cutoffs m̂x
rs by (27). With that information in hand, we can compute the share ν̂r of

surviving firms in each msa as follows:

ν̂r ≡
N̂p

r∑
s N̂

p
s

, where N̂p
r = N̂E

r Gr

(
max

s
m̂x

rs

)
=

α

κ1 + κ2
Sr (µ̂

max
r )−1

(
max

s
m̂x

rs

)k

denotes the number of firms operating in msa r. The total effective labor supply Sr is computed as

in Section 4.1. Note that ν̂r is independent of the unobservable constant scaling α/(κ1 + κ2) that

multiplies the number of firms. The distribution of marginal labor requirements of surviving firms

in city r is Ĝr(m) =
(
m/md

r

)k
.

Second, we draw a large sample of firms from our calibrated msa-level productivity distributions

Ĝr. For that sample to be representative, we draw firms in msa r in proportion to its share ν̂r. For

each sampled firm with marginal labor requirement m in msa r, we can compute its employment

as follows:18

employmentr(m) = m
∑

s

χ̂rsLsqrs(m) =
m

α

∑

s

χ̂rsLs

[
1−W

(
e
m

m̂x
rs

)]
,

where χ̂rs = 1 ifm < m̂x
rs (the establishment can sell tomsa s) and zero otherwise (the establishment

cannot sell to msa s). Since we can identify employment only up to some positive scaling coefficient

(which depends on the unobservable α) we choose, without loss of generality, that coefficient such

that the average employment per firm in our sample of establishments matches the observed average

employment in the 2007 cbp. Doing so allows us to readily compare the generated and observed

data as we can sort the sampled firms into the same size bins as those used for the observed firms.

We use four standard employment size bins from the cbp: ι = {1–19, 20–99, 100–499, 500+}
employees. Let NSIM

(ι) and NCBP
(ι) denote the number of firms in each size bin ι in our sample and in

the cbp, respectively. Let also NSIM and NCBP denote our sample size and the observed number

of establishments in the cbp. Given a value of k, the following statistic is a natural measure of the

goodness-of-fit of the simulated establishment-size distribution:

SS(k) =
4∑

ι=1

[
NSIM

(ι)

NSIM
−
NCBP

(ι)

NCBP

]2
, (53)

the value of which depends on the chosen k. It is clear from (53) that we can choose any large sample

size NSIM since it would not affect the ratio NSIM
(ι) /NSIM. Without loss of generality, we choose the

sample size such that the total number of simulated firms operating matches the observed total

number of establishments (NSIM = NCBP). There are 6,431,884 establishments across our 356 msas

in the 2007 cbp, and we sample the same number of firms from our quantified model.19 We finally

choose k by minimizing SS(k).

18We exclude the labor used for shipping goods and the sunk initial labor requirement.
19Doing so allows for a direct comparison of NSIM

(ι) and NCBP
(ι) for each ι. The very small differences in the aggregate

numbers reported in Tables 2 and 3 are due to rounding as the number of firms in each msa has to be an integer.
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4.5 Spatial equilibrium conditions Ar

Our final step is to take into account the spatial equilibrium conditions. Recall that the choice

probabilities are given by (38). Setting U1 + A1 ≡ 0 as a normalization, and using the observed

values of Lr for the 356 msas, the spatial equilibrium conditions Pr = Lr/L for r = 2, 3, . . . , K can

be uniquely solved for (Ur + Ar)/β.
20 We thus obtain the values of (Ur + Ar)/β that replicate the

observed city-size distribution as a spatial equilibrium. Let D̂r denote the solution satisfying

Pr =
exp(D̂r)∑K
s=1 exp(D̂s)

=
Lr

L
, D̂1 = 0. (54)

We then regress D̂r on our measure of indirect utility Ûr and data on natural amenities Ao
r to gauge

their relative importance:

D̂r = α0 + α1Ûr + α2A
o
r + εr, (55)

where Ûr is obtained from (37) using our measures of Lr, Sr, and md
r , as well as the estimate of

τ̂rr.
21 Estimating the coefficients on indirect utility Ûr and natural amenities Ao

r allows us to solve

the issue of how to weight these two terms appropriately in consumers’ location choices. The fitted

residuals ε̂r can be interpreted as the implicit measure of the unobserved part of the msa amenities.

We hence let Âu
r ≡ ε̂r. By construction, that measure is uncorrelated with Ao

r and does not capture

natural amenities such as climate or access to the sea that are subsumed by Ao
r.

4.6 Quantification results

Concerning the Pareto shape parameter, our iterative procedure yields k̂ = 6.4 that minimizes the

sum of squared differences between the observed and computed firm size distributions by size bins.

Columns 2 and 3 of Table 2 show that, despite having only a single degree of freedom, the fit to

the observed distribution is rather good, with the model somewhat under-predicting the number of

small establishments and over-predicting the number of large establishments.

Insert Table 1 about here.

Turning to spatial frictions, we first use (48) to obtain an estimate for the commuting technology

parameters that constitute urban frictions for each msa. As can be seen from Table 1, the values of

θ̂r range from 0.0708 (Los Angeles-Long Beach-Santa Ana and New York-Northern New Jersey-Long

Island) and 0.0867 (Chicago-Naperville-Joliet) to 0.9995 (Yuba City, CA) and 1.4824 (Hinesville-

Fort Stewart, GA). Thus, big cities tend to have better commuting technologies.22

20Since
∑

K

r=1 Pr = 1, the above equations are not independent. We drop the first one without loss of generality.
21Due to the specification in (55), neglecting multiplicative constants in (37) does not affect our results.
22For any given distance x from the cbd, a smaller θ implies that people spend less time to commute to the cbd.

However, this does not necessarily mean that average commuting time is smaller in larger cities because of longer

commuting distances.
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We then use (50) to obtain an estimate for the distance elasticity that constitutes trade frictions.

Our fixed effects estimation of the gravity equation yields γ̂k = 1.2918 (with standard error 0.0271)

which, given k̂ = 6.4, implies γ̂ = 0.2018. Our estimate γ̂k for the year 2007 closely matches the

value of 1.348 reported by Hillberry and Hummels (2008) from estimation of a gravity equation at

the 3-digit zip code level using the 1997 confidential cfs microdata. It is larger than the value of

γk = 0.82 reported by Duranton et al. (2011) which is obtained from a small sample of large cfs

regions. Our subsequent results do not change qualitatively and change little quantitatively when

using their estimate of the distance elasticity as a robustness check.

Having solved equations (54) for D̂r, we run a simple ols estimation of (55), which yields:

D̂r = −0.2194
(0.2644)

+ 1.7481
(0.5289)

∗∗∗Ûr + 0.0652
(0.0199)

∗∗∗Ao
r + ε̂r. (56)

Consistent with theory, both indirect utility and natural amenities significantly influence the spatial

distribution of population across msas, with both coefficients being positive as expected. Table 1 fur-

ther reports the observed msa populations (scaled by their mean, i.e., Lr/L), average productivities

(1/mr) and observed amenity scores Ao
r, as well as the estimated/calibrated values of technological

possibilities µ̂max
r and unobserved consumption amenities Âu

r ≡ ε̂r.

Insert Figures 1 and 2 about here.

Figures 1 and 2 depict the spatial distribution of natural amenities, unobserved amenities, tech-

nological possibilities, and commuting technologies. There are several points worth emphasizing

here. First, our quantified model yields detailed spatial patterns of unobserved consumption ameni-

ties and technological possibilities, the latter of which may be viewed as a measure for msa-level

production amenities. In contrast to, e.g., Roback (1982) and Albouy (2008), our amenity measures

are derived from a framework where geography matters as trade frictions are explicitly taken into

account. Both natural and unobserved amenities are positively correlated with city size, the corre-

lation being stronger for the latter (0.7023) than for the former (0.1334). Larger cities thus tend

to have better unobserved consumption amenities. Second, while the correlation between natural

and unobserved amenities is zero by construction, there is also little correlation between technolog-

ical possibilities and the two types of consumption amenities (-0.0867 and 0.0713 for Ao
r and Âu

r ,

respectively). This is consistent with the results by Chen and Rosenthal (2008) who find that good

business locations in the US often have low consumption amenities, and vice versa.

4.7 msa- and firm-level model fit

Our model can replicate several features of the data, both at the msa and firm levels, that have not

been used in the quantification procedure. We first compute the correlation between actual relative

wages and those predicted by our model (see Appendix D for details on the data). The correlation

is 0.7379 and thus reasonably high. We can also replicate the distribution of establishments across

msas. Table 2 reports the mean, standard deviation, minimum, and maximum of the number of

23



establishments (top part) and average establishment size (bottom part) at the msa level, and the

number of establishments is further broken down by employment size. The last column of Table 2

reports the correlation between the observed and our simulated data, which shows that the simple

cross-msa correlation between the observed and simulated total number of establishments is 0.7253,

with a slightly larger rank correlation of 0.733. Again, these are reasonably large numbers. Turning

to each size class, the fit is less good for small firms (size class 1–19) with a correlation of 0.3824.

However, our model replicates fairly well the numbers of medium-sized and large establishments

(size classes 20–99, 100–499 and 500+) across msas. This can be seen from the mean across msas,

the corresponding standard deviations, and the minimum and maximum values. Furthermore, the

correlations between the observed and predicted numbers of establishments across msas are fairly

high (between 0.889 and 0.9412).

Insert Tables 2 and 3 about here.

Since our key objective is to investigate the importance of urban and trade frictions, having an

idea of how well our model captures these frictions is very important. We hence assess our model’s

ability to replicate observed measures and proxies of these frictions.

Urban frictions. First, we consider urban frictions by comparing the ‘model-based’ and observed

aggregate land rents. The former can be obtained as follows:

ÂLRr =
2πwrhr

θ̂2r

[
1−

(
1 + θ̂r

√
Lr/π +

θ̂2rLr

2π

)
e−θ̂r

√
Lr/π

]
,

where we use our computed θ̂r and the data on the wage wr, the gross labor supply per capita hr,

and city size Lr. The observed aggregate land rent is, in turn, obtained by ALRr = GMRr/(1 −
ownersharer), where GMR is the (aggregate) gross monthly rent.23 The simple correlation between

the model-based and observed aggregate land rents across msas is 0.9805, while the Spearman rank

correlation is 0.9379. Alternatively, we can use ALRr = ERVr/(ownersharer), where ERVr is the

equivalent rent value for houses that are owned. Under this alternative formula, the correlation

between the model-based and observed aggregate land rents becomes 0.9624, while the Spearman

rank correlation is 0.9129. In all cases, the correlations are high, thus suggesting that our model

does a good job in capturing urban frictions across msas.

One might argue that our simple monocentric city model is not the most appropriate specification

as large msas are usually polycentric. To see how urban frictions relate to polycentricity, we compute

a simple correlation between θ̂r and the number of employment centers in each msa for the year

23The formula can be obtained as follows. First, the total amount of expenditure in housing services (ALR) is

given by the sum of the gross monthly rent (GMR) and the equivalent rent value for houses that are owned (ERV).

Data on GMR, which can be decomposed as (average rent)× (number of houses that are rented), is available. Now

assume that GMR/(number of houses rented) = ERV/(number of houses owned) holds in each city at equilibrium

by arbitrage. Under this hypothesis, we obtain ALR = GMR/(1− share of houses that are owned).
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2000 as identified by Arribas-Bel and Sanz Gracia (2010). The correlation is −0.4282, while the

Spearman rank correlation is −0.5643, thus suggesting that our monocentric model with city-specific

commuting technology captures the tendency that larger cities are more efficient for commuting as

they allow for more employment centers, thereby reducing the average commuting distance.

Trade frictions. We next assess to what extent our model can cope with the existing micro

evidence on the spatial structure of shipping patterns. To this end, we consider that the value of

sales from an establishment in city r to city s represents one shipment (characterized by an origin

msa, a destination msa, a shipping value, a unit price, and a shipping distance). We then draw a

representative sample of 40,000 establishments from all msas, which yields a total of 40, 000× 3562

potential shipments.24 Most of the shipments do of course not occur, and there are only 243,784

positive shipments in our sample. Figure 3, which is analogous to Figures 1–3 in Hillberry and

Hummels (2008), reports kernel regressions of various shipment characteristics on distance.25 As

one can see, both aggregate shipment values and the number of shipments fall off very quickly with

distance – becoming very small beyond a threshold of about 200 miles – whereas price per unit first

rises with distance and average shipment values do not display a clear pattern. These results are in

line with the micro evidence from the cfs data provided by Hillberry and Hummels (2008).

Insert Figure 3 about here.

Table 3 further summarizes the observed and predicted shipping shares and shipping distances

by establishment size class. The latter are obtained as follows. First, for each establishment with

labor requirement m in msa r, we compute the value of its sales:

salesr(m) =
∑

s

χrsLsprs(m)qrs(m) =
ŵrm

α

∑

s

χrsLsd
γ̂
rs[W (em/m̂x

rs)
−1 − 1].

We then classify all 6,431,886 establishments in our sample by employment size class, and disaggre-

gate the value of sales for each establishment by distance shipped to compute the shares reported

in Table 3.26 The observed patterns in Table 3 come from Holmes and Stevens (2010) who use

confidential cfs microdata from 1997 to compute the shares of shipping values by distance as well

as average shipping distances. As can be seen from Table 3, our model can qualitatively reproduce

the observed shipment shares, although it over- (under-) predicts the share of shipments within a

short distance for small (large) establishments while it under- (over-) predicts the share of ship-

24As in Section 4.4, the sample size is immaterial for our results provided that it is large enough. Given that the

number of shipments is substantially larger than the number of firms, drawing a large sample of 6.5 million firms as

before proves computationally infeasible.
25As in Hillberry and Hummels (2008), we use a Gaussian kernel with optimal bandwidth and calculated on 100

points. We report results for distances greater than about 10 miles (the minimum in our sample) and up to slightly

below 3,000 miles (the maximum in our sample). Note that we have less variation in distances than Hillberry and

Hummels (2008) who use either 3-digit or 5-digit zip code level data instead of msa data.
26Since we work with shares, the unobservable scaling parameter α does not affect our results.
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ments within a long distance for small (large) establishments. Finally, our model can also explain

the tendency that the mean distance shipped increases with establishment size (columns 10–12).

5 Counterfactuals

Having shown that our quantified model performs well in replicating several features of the data,

we now use it for counterfactual analysis. Our aim is, in particular, to assess how the US city-size

distribution, the sizes of individual cities, as well as the distributions of productivity and markups

across msas would change if either urban frictions or trade frictions were eliminated.

5.1 Numerical procedure

We first explain in some detail the procedure used for running counterfactuals in our framework.

In our first counterfactual experiment (which we call ‘no urban frictions’), we set all commuting-

related frictions – and hence all land rents – to zero (θ̂r = 0 for all r) while keeping trade frictions

τ̂rs, technological possibilities µ̂
max
r , and amenities (Ao

r and Âu
r ) constant.

27 This corresponds to a

hypothetical world where only goods are costly to transport while living in cities does not impose

any urban costs. In our second counterfactual experiment (which we call ‘no trade frictions’), we

set external trade costs from s to r equal to internal trade costs in r (τsr = τrr for all r and s) while

holding urban frictions θ̂r, technological possibilities µ̂
max
r , and amenities (Ao

r and Âu
r ) constant.

This corresponds to a hypothetical world where consumers face the same trade costs for local and

non-local varieties.28 For the sake of brevity, we explain the procedure for the case without urban

frictions only as it works analogously for the case without trade frictions.

First, we let θ̂r = 0 for all r and keep the initial population distribution fixed. This parameter

change induces changes in the indirect utility levels. Let Ũ0
r denote the new counterfactual utility

in msa r, evaluated at the initial population and θ̂r = 0. Second, we replace Ûr with its new

counterfactual value Ũ0
r to obtain D̃0

r = α̂0+ α̂1Ũ
0
r + α̂2A

o
r + Âu

r . The spatial equilibrium conditions

(54) will then, in general, no longer be satisfied, and hence city sizes must change. We thus consider

the following iterative adjustment procedure to find the new counterfactual spatial equilibrium:

1. Consider the new choice probabilities

P̃0
r =

exp(D̃0
r)∑

s exp(D̃
0
s)

(57)

27Although workers are mobile in our model, we can set urban frictions to zero without having degenerate equi-

libria with full agglomeration in a single city. The reason is that, as explained before, consumers’ location choice

probabilities are expressed as a logit so that no city can completely disappear.
28We have also experimented with setting τrs = τrr for all r and s, which corresponds to a hypothetical world where

goods are as costly to trade between msas as within msas from the firms’ perspective. Although the magnitudes

delivered by this alternative counterfactual scenario are slightly larger, there are no qualitative changes.
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induced by the change in spatial frictions, which yield a new population distribution L̃0
r = LP̃0

r

for all r = 1, ..., K.

2. Given the intial µ̂max
r , the new population distribution L̃0

r for all r = 1, ..., K, as well as the

counterfactual value for the commuting technology parameter θ̂r = 0, the market equilibrium

conditions (51) and (52) generate new wages w̃1
r and cutoffs (m̃d

r)
1. Expression (37) then yields

new utility levels Ũ1
r .

3. Using D̃1
r = α̂0+ α̂1Ũ

1
r + α̂2A

o
r + Âu

r , the choice probabilities can be updated as in (57), which

yields a new population distribution L̃1
r = LP̃1

r for all r = 1, ..., K.

4. We iterate through steps 2–3 until convergence of the population distribution to obtain {L̃r, w̃r,

m̃d
r} for all r = 1, ..., K.

5.2 No urban frictions

How would the US economic geography look like without urban frictions? In this subsection, we

focus on counterfactual changes in population, productivity, and markups. Starting with city sizes,

eliminating urban frictions leads to (gross) cross-msa population movements of about 4 million

people, i.e., 1.6% of the total msa population in our sample. These population changes are unevenly

spread across msas. New York, for example, gains about 8.5% and some msas close to New York

and Boston gain even more (New Haven-Milford, CT, gains about 12.1% and Bridgeport-Stamford-

Norwalk, CT, about 15.9%). Consistent with the comparative static results of Section 3.4, large

cities on average gain population, whereas small- and medium-sized cities tend to lose. These results

are depicted in Figure 5, which plots percentage changes in msa population against the initial log

msa population. Further insights are provided by the the top panel of Figure 6, which depicts

the distribution of counterfactual percentage changes in Lr. As there are many more small cities

that lose population than large cities that gain population, the implied distribution of percentage

changes is skewed to the left. Last, these population changes follow a rich spatial pattern, as

depicted in the top panel of Figure 7. Although individual city sizes would be substantially affected

by the fall in urban frictions, the city-size distribution remains fairly stable as shown in Figure 4. A

standard rank-size rule regression reveals that the coefficient on log size rises slightly from −0.9249

to −0.9178, the change being however statistically insignificant.29 We will discuss this stability in

greater depth in Section 6.3.

Insert Figures 4 and 5 about here.

Turning to changes in average productivity, observe that most msas actually lose when urban

frictions are eliminated (see the middle panel of Figure 6). Indeed, as shown in Figures 6 and 7,

productivity changes can go either way. For example, Monroe, MI (a smaller msa) experiences a

29We follow Gabaix and Ibragimov (2011) and adjust the rank by subtracting 1/2.
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productivity decrease of 0.9%, whereas New York sees its productivity increase by 0.76%. This is

consistent with our results from Section 3.4: as small msas lose population, local market size and,

thereby, average productivity deteriorate; in contrast, large msas and cities close by see their market

size expand, which raises productivity as trade frictions are unchanged. Interestingly, smaller cities

near New York, like Bridgeport-Stamford-Norwalk, CT, and Trenton-Ewing, NJ, see their produc-

tivity increase by about 1.4% and 0.9%, respectively, which even exceeds the productivity gain in

New York itself. Computing the nation-wide productivity change, weighted by msa population

shares in the initial equilibrium, we find that eliminating urban frictions would increase average

productivity by a mere 0.04%.

Insert Figures 6 and 7 about here.

As for markups, the bottom panels of Figures 6 and 7 reveal that this is the dimension where the

largest changes take place. Markups would decrease everywhere, with reductions ranging from 5.3%

to about 16%, but the more so for the most populated areas of the East and West coasts. As can

be seen from (36), the reason for these large changes is twofold. First, eliminating urban frictions

increases the effective labor supply per capita hr = Sr/Lr everywhere, which allows for more firms

in each msa and, therefore, for more competition. Second, there is an effect going through the

cutoffs. Some places see their cutoffs fall, which puts additional pressure on markups. While cutoffs

may increase in cities that lose population, the second effect is always dominated by the first one,

so that markups fall in all msas.

To summarize, even without urban frictions, the city-size distribution would remain fairly stable,

despite the fact that larger cities tend to grow and smaller cities tend to shrink. Furthermore, the

‘no urban frictions’ case supports more firms, which reduces markups and expands product diversity,

though firms are not on average much more productive than in a world with urban frictions. The

productivity gap between large and small cities would, however, widen.

5.3 No trade frictions

What would happen to individual city sizes, to the city-size distribution, and to productivity and

markups in a world where consumers face the same trade costs for local and non-local varieties?

To investigate this issue, we set τ̂sr = τ̂rr for all r and s.30 Starting with city sizes, eliminating

trade frictions would lead to significant (gross) cross-msa population movements of about 10.2

million people, i.e., 4.08% of the total msa population in our sample. Some small cities would gain

substantially. For example, the population of Casper, WY, would grow by about 105% and that

of Hinesville-Fort Stewart, GA, by about 99.4%. Figure 9 plots the percentage changes in msa

population against the initial log msa population. Consistent with the comparative static results of

Section 3.4, in a world without trade frictions larger cities lose ground and agents move, on average,

30Eaton and Kortum (2002) consider a similar counterfactual scenario in the context of international trade, yet

without considering induced changes in the population distribution and with a fixed mass of varieties.
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to smaller cities to relax urban costs. These changes are depicted in the top panel of Figure 11.

Although individual cities would be substantially affected by the fall in trade frictions, the city-size

distribution remains again quite stable, as can be seen from Figure 8. The coefficient on log size

drops from −0.9249 to −0.9392, yet this change is again statistically insignificant.

Insert Figures 8 and 9 about here.

Concerning the changes in average productivity, observe first that all msas gain. Yet, as can

be seen from the middle panels of Figures 10 and 11, the gains are unevenly spread across msas.

Whereas some small cities gain substantially (e.g., an increase of about 125.5% in Great Falls, MT),

large cities gain significantly less: 41.18% in New York, 48.08% in Los Angeles, and 55.71% in

Chicago. The first reason is linked to market access. Indeed, the more populated areas, e.g., those

centered around California and New England, would be those gaining the least from a reduction of

trade frictions, as they already provide firms with a good access to a large local market. The second

reason is that, as stated above, large cities tend to lose population, thereby reducing the productivity

gains brought about by the fall in trade frictions. Computing the nation-wide productivity change,

weighted by msa population shares in the initial equilibrium, we find that eliminating trade frictions

would increase average productivity by 67.59%. Thus, reducing spatial frictions for shipping goods

would entail substantial aggregate productivity gains.

Insert Figures 10 and 11 about here.

As for markups, the bottom panels of Figures 10 and 11 reveal that they would decrease consid-

erably in a world without trade frictions, with reductions ranging from 29% to 55%. Such reductions

are particularly strong in msas with poor market access, i.e., the center of the US and the areas close

to the borders. Observe that the changes in markups – though substantial – are more compressed

than the changes in productivity (the coefficient of variation for productivity changes is 0.18, while

that for changes in markups is 0.09). The reason is the following. Eliminating trade frictions re-

duces cutoffs in all msas, but especially in small and remote ones. This puts downward pressure

on markups. Yet, there is also an indirect effect through changes in effective labor supply hr. An

increase in hr, which occurs in big cities that lose population, reduces markups more strongly than

what is implied by the direct change only, while the decrease in hr that occurs in small and remote

cities gaining population works in the opposite direction and dampens the markup reductions.

To summarize, even without trade frictions, the city-size distribution would remain fairly stable,

despite the fact that larger cities tend to shrink and smaller cities tend to grow. Furthermore, the

‘no trade frictions’ case allows for higher average productivity and lower markups by intensifying

competition in all msas, and especially in small and remote ones. The productivity gap between

large and small cities would, therefore, shrink.
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6 Extensions and discussion

6.1 Short- vs long-run impacts

The main insights from our two counterfactual experiments are summarized in the top panel of

Table 4. These results refer to the long-run impacts of eliminating urban or trade frictions as they

include the effects of population movements. To gauge the contribution of labor mobility to these

overall impacts of spatial frictions in the US, it is useful to disentangle the short-run effects, before

the population reshuffling has taken place, from the long-run effects.

We now consider the same counterfactual experiments as in the previous section, yet we do not

allow for labor mobility and hold city sizes fixed at their initial levels. The margins of adjustment

are then productivity, markups and wages. Key results are given in the middle panel of Table 4. As

one can see by comparing the short-run and the long-run figures, the bulk of changes takes place

already in the short-run.

Insert Table 4 and Figure 12 about here.

One noticeable exception is productivity changes whose sign gets reversed between the short-

and long-run in the no urban frictions case. This decomposition of the short- and long-run effects

can also be related to the comparative static results of Section 3.4. There, we have shown that the

instantaneous impact of reducing urban frictions – keeping Lr fixed – is to raise md
r (i.e., to lower

productivity) in the large city and to raise productivity in the small city. The quantitative findings

summarized in the top panel of Figure 12 are consistent with this prediction, as they show that the

cutoffs md
r rise, on average, in larger cities when urban frictions are eliminated while population is

held fixed. However, as can be seen from the bottom panel of Figure 12, the subsequent movement

of population (which flows toward the larger cities), more than offsets this initial change, thereby

generating larger productivity gains in the bigger cities in the long-run equilibrium.31 Summing up,

whereas short-run impacts play a key role in the overall adjustments to spatial frictions, population

mobility is crucial for understanding productivity changes.

6.2 Agglomeration economies

There is a large body of literature showing that agglomeration economies, i.e., productivity gains

due to larger or denser urban areas, are a prevalent feature of the spatial economy (Rosenthal and

Strange, 2004; Melo et al., 2010). We have so far focused entirely on one channel: larger cities are

more productive because of tougher firm selection. Yet, larger or denser cities can become more

productive for various other reasons such as sharing–matching–learning externalities (Duranton and

Puga, 2004), and sorting by human capital (Combes et al., 2008; Behrens et al., 2010). Although

31Some simple ols regressions of the change in md
r
in the short- and in the long-run on inital population yield:

∆md
r = −0.0821∗∗∗ + 0.0127∗∗∗Lr in the short-run, and ∆md

r = 0.0817∗∗∗ − 0.0194∗∗∗Lr in the long-run, thus

showing the switch in the results depending on whether or not population is considered mobile.
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some recent studies attempt to assess the relative importance of firm selection and more conventional

agglomeration economies in explaining the productivity advantage of large cities, it is fair to say

that the issue is not settled yet (see, e.g., Combes et al., 2010; Holmes et al., 2010).

In this subsection, we illustrate a simple way to extend our framework to include agglomeration

economies. Specifically, we allow the upper bound in each msa (mmax
r ) to be a function of the

density of that msa. Agglomeration economies are thus modeled as a right-shift in the ex ante

productivity distribution: upon entry, a firm in a denser msa has a higher probability of getting a

better productivity draw.32 Starting from the baseline model, assume that technological possibilities

µmax
r can be expressed as µmax

r = c·density−kξ
r ·ψmax

r , where densityr ≡ Lr/surfacer, ξ is the elasticity

of the ex ante upper bound of the marginal labor requirement with respect to density, and ψmax
r

is an idiosyncratic measure of technological possibilities that is purged from agglomeration effects.

We can then estimate the ex ante productivity advantage of large cities by running a simple log-log

regression of µ̂max
r on msa population densities and a constant, which yields:

ln(µ̂max
r ) = 2.6898

(0.3566)

∗∗∗ − 0.1889
(0.0813)

∗∗ ln(densityr).

Since in the model lnµmax
r = k lnmmax

r plus a constant, the elasticity ξ of mmax
r with respect to

density is given by −0.1889/k̂ = 0.0295, which is the value we use in what follows. In words,

doubling msa density reduces the upper bound (and, equivalently, the mean by the properties of

the Pareto distribution) of the ex ante marginal labor requirement of entrants by 2.95%. That

figure, though computed for the ex ante distribution, lies within the consensus range of previous

elasticity estimates for agglomeration economies measured using ex post productivity distributions

(see Melo et al., 2010). Note that this effect is independent of the subsequent truncation of the ex

post productivity distribution, thus disentangling agglomeration from selection.

We compute µ̂max
r in the initial equilibrium. Call it µ̂max,0

r . Assume now that the population of

msa r changes from L0
r to L1

r . The new µ̂max
r is then given by µ̂max,1

r = c · (L1
r/surfacer)

−kξ · ψ̂max
r .

Hence, it is easy to see that, given the initial estimates µ̂max,0
r we have µ̂max,1

r = µ̂max,0
r (L1

r/L
0
r)

−kξ
.

Thus, we can integrate agglomeration economies in a straightforward way into our framework by

replacing µ̂max
r by µ̂max

r (Lr/L
0
r)

−kξ
in the market equilibrium conditions (51) and (52) when running

the counterfactuals:

µ̂max
r

(
L1
r

L0
r

)−kξ

=
∑

s

L1
sτrs

(
md

s

τss
τrs

ws

wr

)k+1

(58)

S1
r

L1
r

1

(md
r)

k+1
=

∑

s

S1
sτrr

(
τsr
τrr

ws

wr

)−k
1

µ̂max
s

(
L1
s

L0
s

)−kξ
, (59)

We run both counterfactuals (‘no urban frictions’ and ‘no trade frictions’) with the agglomeration

economies specification. The long-run impacts are summarized in the bottom panel of Table 4

32Formally, the right-shift in the ex ante productivity distribution implies that the distribution in a denser msa

first-order stochastically dominates that in a less dense msa. Observe that firm selection afterwards acts as a

truncation, so that the ex post distribution is both right-shifted and truncated.
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(labeled cf3 and cf4, respectively). As can be seen, results change little compared to our previous

specification without agglomeration economies (reported in the top panel). If anything, the implied

aggregate changes become a bit larger, but the overall difference is small. Observe that this finding

does not mean that agglomeration economies are unimportant. The reason why they do not matter

much in our counterfactuals is that not that many people move between the initial and the coun-

terfactual equilibria. Yet, given the measured elasticities of agglomeration economies, substantial

population movements would be required for them to become quantitatively really important.

6.3 How important are spatial frictions?

Our paper is, to the best of our knowledge, the first to investigate the impact of both urban and

trade frictions on the size distribution of cities.33 A key novel insight of our analysis is that spatial

frictions have a quite limited impact on that distribution. Although there would be small changes in

the coefficient on log size, the rank-size rule would still hold with a statistically identical coefficient

in a world without urban or trade frictions (both with and without the prevalence of agglomeration

economies).34 This result has important implications for future spatial modeling. As far as the

city-size distribution is concerned, we can apparently abstract from either urban or trade frictions

without much loss of generality. Hence, the modeling strategies taken by recent studies such as

Gabaix (1999), Eeckhout (2004), Duranton (2007) and Rossi-Hansberg and Wright (2007), where

trade frictions are assumed away, indeed appear to be good approximations.

Although spatial frictions hardly affect the city-size distribution, they do matter for the sizes

of individual cities within that stable distribution. Indeed, eliminating spatial frictions leads to

aggregate (gross) inter-msa reallocations of about 4–10 million people. Whether or not large or small

cities gain population crucially depends on which type of spatial frictions is eliminated. Actually,

our numbers for the aggregate population movements might appear quite small at first glance, given

that we contemplate major exogenous shocks in our counterfactual exercises. Yet, one has to keep

in mind that we have considered simultaneous reductions in spatial frictions for all cities. We can

33The most closely related paper in that respect is Desmet and Rossi-Hansberg (2010). Their framework, however,

abstracts from trade frictions, so that it is not suited to investigate their impact on the city-size distribution. Our

result on urban frictions also contrasts with that of Desmet and Rossi-Hansberg (2010), who find that the size

distribution tilts substantially when urban frictions are reduced. The difference in results can be understood as

follows. In their analysis, the commuting friction parameter is common to all msas, whereas it is city specific in

our model. In our setting, big cities like New York or Los Angeles tend to have the best commuting technologies in

the initial equilibrium, so that the impacts of setting θ̂r = 0 are relatively small there. By contrast, in Desmet and

Rossi-Hansberg (2010), the commuting technology improves equally across all msas so that big cities get very large

due to larger efficiency gains in commuting than in our case. Another key difference is that in Desmet and Rossi-

Hansberg (2010), all consumers react in the same way to changes in utility and amenities, whereas those reactions

are idiosyncratic in our model and, therefore, less extreme.
34This insight is also consistent with the relative stability of the US city-size distribution over the 20th century as

documented by Black and Henderson (2003). Note that although urban and trade frictions changed a lot over that

century, such aspects are not explicitly incorporated into their stochastic modeling framework.
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also look at a unilateral reduction for a single city only. Specifically, let us briefly consider two

additional counterfactuals. In the first one, we only change, with respect to the initial equilibrium,

urban costs for New York where they fall to zero. In that case, New York grows by about 19.73%

(i.e., by about 3.7 million people) in the specification without, and by 20.61% in the specification

with agglomeration economies. In the second one, we set τsr = τrr for all s only when r is New York.

That is, we improve the market access to New York for all firms that are located elsewhere, while

holding the market access of firms located in New York to other msas constant. In that case, New

York shrinks by a remarkable 15.57% (i.e., about 3 million people), and if we additionally allow for

agglomeration economies it even shrinks by 15.95%. Hence, a unilateral change in spatial frictions

for a single city has a much larger impact on the size of that city. More generally, these results show

that the relative levels across cities of both types of frictions matter a lot to understand the sizes

of individual cities.

Finally, our experiments show that urban and trade frictions matter, though to a different

extent, for the distributions of productivity and markups – and ultimately welfare – across msas.

Eliminating trade frictions would lead to significant productivity gains and substantially reduced

markups. These changes are highly heterogeneous across space and tend to reduce differences in

productivity and city sizes across msas. Concerning urban frictions, their elimination would not

give rise to such significant productivity gains, but would still considerably intensify competition

and generate lower markups.

7 Conclusions

We have developed a new neg-cum-‘urban systems’ model and analyzed how city sizes, on the one

hand, and productivity and competition, on the other hand, simultaneously respond to shocks in

spatial frictions. Using 2007 US data at the state and at the metropolitan statistical area (msa)

levels, we have quantified our model using all of its market and spatial equilibrium conditions, a

gravity equation for trade flows, and a logit model for consumers’ location choice probabilities. The

quantified model performs well empirically and is able to reproduce – both at the msa and the firm

levels – a number of empirical features that are linked to urban and trade frictions

To assess the importance of spatial frictions, we have used our model to study two counterfactual

scenarios. Those allow us to trace out the impacts of both trade and urban frictions on the city-size

distribution, the sizes of individual cities, as well as on productivity and competition across space.

A first key insight is that the city-size distribution is little sensitive to the presence of either trade or

urban frictions. A second key insight is that, within the stable distribution, the sizes of individual

cities can be affected substantially by changes in spatial frictions. Last, our third key insight is that

their presence imposes quite significant welfare costs. The reasons are too high price-cost margins

and, depending on the type of spatial frictions we consider, foregone productivity or reduced product

diversity.
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We believe that our framework provides a useful starting point for further general equilibrium

counterfactual analysis in spatial models. In particular, our model: (i) endogenizes productivity,

markups, and product diversity at the firm level, three aspects that loom large in the recent trade

literature; (ii) encompasses many key elements identified as being relevant by the neg and urban

economics literature;; (iii) allows to deal with heterogeneity along several dimensions (across space,

across firms, across consumers); (iv) can be readily brought to data in very a self-contained way; (v)

fits quite nicely features of the data not used in the quantification stage, including spatial shipping

patterns and aggregate land rents; and (vi) provides a more spatially oriented approach to the

classical Rosen-Roback type of analysis widely used in the urban economics literature.

There are many additional relevant questions that could be investigated within our framework,

and we here suggest two of them. First, our model delivers a msa-specific measure of underlying

productivity, our technological possibilities µ̂max
r . This measure is, by construction, filtered for ag-

glomeration effects that stem from either local market size or accessibility. The correlation with an

observed measure of productivity, such as gdp per employee (md
r), is far from perfect (0.6512) thus

providing substantial additional information on the determinants of an msa’s productivity. Ana-

lyzing the economic fundamentals behind the spatial and temporal variation in the µ̂max
r certainly

represents an interesting avenue of further research. Second, it would be desirable to replicate our

results for countries other than the US. The features of the spatial distribution of economic activity

in the European Union are, for example, quite different from those of the US.
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Appendix A: Proofs

A.1. Existence and uniqueness of the equilibrium cutoff md. To see that there exists a unique

equilibrium cutoff md, we apply the Leibniz integral rule to the left-hand side of (14) and use W (e) = 1 to

obtain

eL

α(md)2

∫ md

0
m2
(
W−2 − 1

)
W ′dG(m) > 0,

where the sign comes from W ′ > 0 and W−2 ≥ 1 for 0 ≤ m ≤ md. Hence, the left-hand side of (14) is

strictly increasing. This uniquely determines the equilibrium cutoff md, because

lim
md→0

∫ md

0
m
(
W−1 +W − 2

)
dG(m) = 0 and lim

md→∞

∫ md

0
m
(
W−1 +W − 2

)
dG(m) = ∞.

A.2. Indirect utility in the single city. To derive the indirect utility, we first compute the

(unweighted) average price across all varieties. Multiplying both sides of (10) by p(i), integrating over Ω,

and using (7), we obtain:

p = mw +
αE

N

where m ≡ (1/N)
∫
Ωm(j)dj denotes the average marginal labor requirement of the surviving firms. Using

p, expression (8) can be rewritten as

U =
N

k + 1
− S

L

α

md
, (60)

where we use E = (S/L)w, pd = mdw and m = [k/(k + 1)]md. When combined with (18) and (19), we

obtain the expression for U as given in (20).

We now show that U is single-peaked with respect to L. To this end, we rewrite the indirect utility

(21) as U = b(S/L)L1/(k+1), where b is a positive constant capturing k, α, and µmax, and then consider a

log-transformation, lnU = ln b+ lnS − [k/(k + 1)] lnL. It then follows that

∂ lnU

∂ lnL
=

LS′

S
− k

k + 1
.

To establish single-peakedness, we need to show that

LS′

S
=

θ2(L/π)

2
(
eθ
√

L/π − 1− θ
√
L/π

)

cuts the horizontal line k/(k+1) ∈ (0, 1) only once from above. Notice that LS′/S → 1 as L → 0, whereas

LS′/S → 0 as L → ∞. Single-peakedness therefore follows if

d

dL

(
LS′

S

)
= −

2 + θ
√
L/π + eθ

√
L/π

(
θ
√
L/π − 2

)

(4/θ2)
[√

π
(
eθ
√

L/π − 1
)
− θ

√
L
]2 < 0, ∀L.
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For this to be the case, the numerator must be positive. Let y ≡ θ
√

L/π > 0. Then we can show that

H(y) ≡ 2 + y + ey(y − 2) > 0 for all y > 0. Obviously, H(0) = 0. So, if H ′ > 0 for all y > 0, the proof is

complete. It is readily verified that H ′ = 1 + yey − ey > 0 is equivalent to e−y > 1 − y, which is true for

all y by convexity of e−y (observe that 1 − y is the tangent to e−y at y = 0 and that a convex function is

everywhere above its tangent).

A.3. The mass of varieties consumed in the urban system. Using N c
r as defined in (28),

and the external cutoff and the mass of entrants as given by (27) and (33), and making use of the Pareto

distribution, we obtain:

N c
r =

κ2
κ1 + κ2

(
md

r

)k∑

s

Ss

F (mmax
s )k

(
τrr
τsr

wr

ws

)k

=
α

κ1 + κ2

(
md

r

)k

τrr

∑

s

Ssτrr

(
τrr
τsr

wr

ws

)k κ2
αF (mmax

s )k
.

Using the definition of µmax
s , and noting that the summation in the foregoing expression appears in the

equilibrium relationship (34), we can then express the mass of varieties consumed in city r as given in (35).

A.4. The weighted average of markups in the urban system. Plugging (29) into the definition

(36), the weighted average of markups in the open economy can be rewritten as

Λr =
1

αEr
∑

sN
E
s Gs(mx

sr)

∑

s

NE
s τsrws

∫ mx
sr

0
m
(
W−2 −W−1

)
dGs(m),

where the argument em/mx
sr of the Lambert W function is suppressed to alleviate notation. As shown in

Appendix B.1, the integral term is given by κ3(m
max
s )−k(mx

sr)
k+1 = κ3Gs(m

x
sr)m

x
sr. Using this, together

with (27) and Er = (Sr/Lr)wr, yields the expression in (36).

A.5. Indirect utility in the urban system. To derive the indirect utility, we first compute the

(unweighted) average price across all varieties sold in each market. Multiplying both sides of (26) by prs(i),

integrating over Ωrs, and summing the resulting expressions across r, we obtain:

ps ≡
1

N c
s

∑

r

∫

Ωrs

prs(j)dj =
1

N c
s

∑

r

τrswr

∫

Ωrs

mr(j)dj +
αEs

N c
s

,

where the first term is the average of marginal delivered costs. Under the Pareto distribution,
∫
Ωsr

ms(j)dj =

NE
s

∫mx
sr

0 mdGs(m) = [k/(k + 1)]mx
srN

E
s Gs(m

x
sr). Hence, the (unweighted) average price can be rewritten

for city r as follows

pr =
1

N c
r

∑

s

τsrws

(
k

k + 1

)
mx

srN
E
s Gs(m

x
sr) +

αEr

N c
r

=

(
k

k + 1

)
pdr +

αEr

N c
r

, (61)

where we have used (28) and pdr = τsrwsm
x
sr. Plugging (61) into (24) and using (27), the indirect utility is

then given by

Ur =
N c

r

k + 1
− α

τrr

Sr

Lrmd
r

,

which together with (35) and (36) yields (37).
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A.6. Some analytical results in the two-city case.

(i) A reduction in θ from any given positive value to zero raises S1/S2. In a world with urban frictions

(where θ > 0), and given that h1 = h2 = h and θ1 = θ2 = θ, the term S1/S2 is given by

S1

S2
=

1−
(
1 + θ

√
L1/π

)
e−θ

√
L1/π

1−
(
1 + θ

√
L2/π

)
e−θ

√
L2/π

. (62)

In a world without urban frictions (where θ = 0), we have S̃1 = L1h and S̃2 = L2h, so that S̃1/S̃2 =

L1/L2. Our aim is thus to prove that L1/L2 is larger than the term S1/S2 given in (62). Letting

yr ≡ θ
√
Lr/π > 0, this is equivalent to proving that y21/ (1− e−y1 − y1e

−y1) > y22/ (1− e−y2 − y2e
−y2).

We thus need to show that y2/(1 − e−y − ye−y) is increasing because y1 > y2. By differentiating, we have

the derivative

ye−y

(1− e−y − ye−y)2
Y, where Y ≡ 2ey − [(y + 1)2 + 1].

Noting that Y = 0 at y = 0 and Y ′ = 2[ey − (y + 1)] > 0 for all y > 0, we know that the derivative is

positive for all y > 0. Hence, S̃1/S̃2 = L1/L2 > S1/S2.

(ii) m̃d
1 < md

1 and m̃d
2 < md

2 in the case without trade frictions. Setting τ = t, the market equilibrium

conditions can be rewritten as

µmax
1

t
= L1X1 + L2

X2

Ω
(63)

µmax
2

t
= L2X2 + L1ΩX1 (64)

Ω =

(
ρ

σ

X2

X1

) k+1
2k+1

, (65)

where X1 ≡ (md
1)

k+1, X2 ≡ (md
2)

k+1, and Ω ≡ ωk+1. From (63) and (64), we thus have

Ω
µmax
1
t =

µmax
2
t = L1ΩX1 + L2X2. Hence, Ω = ρ must hold when τ = t. We know by (65) that

X2 = (σ/ρ)Ω
2k+1
k+1 X1 = σρ

k
k+1X1. Plugging this expression into (63) yields the counterfactual cutoffs

X̃1 = (m̃d
1)

k+1 =
µmax
1

L1t

1

1 + σρ−
1

k+1 (L2/L1)
and X̃2 = (m̃d

2)
k+1 =

µmax
2

L2t

1

1 + σ−1ρ
1

k+1 (L1/L2)
. (66)

Establishing that X̃1 < X1, i.e., that m̃
d
1 < md

1 requires

1− ρ(t/τ)kω−(k+1)

1− (t/τ)2k
>

1

1 + σρ−
1

k+1 (L2/L1)

⇒ σρ−
1

k+1

(
L2

L1

)[
1− ρ

(
t

τ

)k

ω−(k+1)

]
>

(
t

τ

)k
[
ρω−(k+1) −

(
t

τ

)k
]

⇒ ρ−
1

k+1

(
S2

S1

)
ω−(k+1)

[
ωk+1 − ρ

(
t

τ

)k
]
>

(
t

τ

)k

ω−(k+1)

[
ρ−

(
t

τ

)k

ωk+1

]

⇒ ρρ−
1

k+1

(τ
t

)k
> ρ

(
S1

S2

)
ρ− (t/τ)kωk+1

ωk+1 − ρ(t/τ)k
= ωk,

40



where the last equality holds by (44). We thus need to prove ρk/(k+1)(τ/t)k > ωk or ρ1/(k+1)(τ/t) > ω,

which is straightforward since ρ1/(k+1)(τ/t) > ρ1/(k+1)(τ/t)k/(k+1) ≡ ω > ω. Hence, m̃d
1 < md

1 must be

true. Using a similar approach, it can be shown that m̃d
2 < md

2 is also satisfied. The elimination of trade

frictions thus leads to lower cutoffs in both cities.

(iii) Υ̃ < Υ for ρ1/(k+1) ≤ σ. Let ∆md
r ≡ md

r − m̃d
r > 0. Then, proving h1(1/m̃

d
1 − 1/md

1) <

h2(1/m̃
d
2 − 1/md

2) is equivalent to proving that

h1∆md
1

md
1m̃

d
1

<
h2∆md

2

md
2m̃

d
2

⇔ md
1m̃

d
1∆md

2

md
2m̃

d
2∆md

1

h2
h1

> 1. (67)

This can be done by the following steps. First, we prove cutoff convergence, i.e., m̃d
2/m̃

d
1 < md

2/m
d
1. Using

(66), the counterfactual cutoff ratio is given by (m̃d
2/m̃

d
1)

k+1 = σρk/(k+1), whereas using (43), the cutoff

ratio with trade frictions is

(
md

2

md
1

)k+1

=
L1

L2

1

ω−(k+1)

ρ− (t/τ)kωk+1

ωk+1 − ρ(t/τ)k
=

L1

L2

1

ω−(k+1)

ωk

ρ

S2

S1
=

σ

ρ
ω2k+1,

where we use (44) to obtain the second equality. Taking their difference, showing that

m̃d
2/m̃

d
1 < md

2/m
d
1 boils down to showing that ρ1/(k+1) < ω at the market equilibrium. This can be

done by evaluating (44) at ω = ρ1/(k+1). The LHS is equal to ρk/(k+1), which falls short of the RHS given

by ρS1/S2 (because ρ ≥ 1, k ≥ 1, and S1/S2 > 1). Since the LHS is increasing and the RHS is decreasing,

it must be that ρ1/(k+1) < ω∗. Thus, we have proved m̃d
2/m̃

d
1 < md

2/m
d
1 . Turning to the second step, this

cutoff convergence then implies

md
2

md
1

>
m̃d

2

m̃d
1

⇒ md
1

md
2

∆md
2

∆md
1

> 1 ⇒
(
md

1

md
2

m̃d
1

m̃d
2

∆md
2

∆md
1

h2
h1

)
m̃d

2

m̃d
1

h1
h2

> 1. (68)

Recall from (67) that we ultimately we want to prove that
(
md

1

md
2

m̃d
1

m̃d
2

∆md
2

∆md
1

h2
h1

)
> 1. A sufficient condi-

tion for this to be satisfied, given (68), is that (m̃d
2/m̃

d
1)(h1/h2) ≤ 1, i.e., that [σρk/(k+1)]1/(k+1)(1/σ) =

[ρ1/(k+1)/σ]k/(k+1) ≤ 1. This is the case if ρ1/(k+1) ≤ σ.

Appendix B: Integrals involving the Lambert W function

To derive closed-form solutions for various expressions throughout the paper we need to compute integrals

involving the Lambert W function. This can be done by using the change in variables suggested by Corless

et al. (1996, p.341). Let

z ≡ W
(
e
m

I

)
, so that e

m

I
= zez , where I = md

r ,m
x
rs,

where subscript r can be dropped in the closed economy. The change in variables then yields dm =

(1 + z)ez−1Idz, with the new integration bounds given by 0 and 1. Under our assumption of a Pareto

distribution for productivity draws, the change in variables allows to rewrite integrals in simplified form.
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B.1. First, consider the following expression, which appears when integrating firms’ outputs:

∫ I

0
m
[
1−W

(
e
m

I

)]
dGr(m) = κ1 (m

max
r )−k Ik+1,

where κ1 ≡ ke−(k+1)
∫ 1
0 (1 − z2) (zez)k ezdz > 0 is a constant term which solely depends on the shape

parameter k.

B.2. Second, the following expression appears when integrating firms’ operating profits:

∫ I

0
m

[
W
(
e
m

I

)−1
+W

(
e
m

I

)
− 2

]
dGr(m) = κ2 (m

max
r )−k Ik+1,

where κ2 ≡ ke−(k+1)
∫ 1
0 (1 + z)

(
z−1 + z − 2

)
(zez)k ezdz > 0 is also a constant term which solely depends

on the shape parameter k.

B.3. Third, the following expression appears when deriving the weighted average of firm-level markups:

∫ I

0
m

[
W
(
e
m

I

)−2
−W

(
e
m

I

)−1
]
dGr(m) = κ3 (m

max
r )−k Ik+1,

where κ3 ≡ ke−(k+1)
∫ 1
0 (z

−2 − z−1)(1 + z)(zez)kezdz > 0 is a constant term which solely depends on the

shape parameter k.

B.4. Finally, the following expression appears when integrating firms’ revenues:

∫ I

0
m

[
W
(
e
m

I

)−1
− 1

]
dGr(m) = κ4 (m

max
r )−k Ik+1,

where κ4 ≡ ke−(1+k)
∫ 1
0 (z

−1 − z) (zez)k ezdz > 0 is a constant term which solely depends on the shape

parameter k. Using the expressions for κ1 and κ2, one can verify that κ4 = κ1 + κ2.

Appendix C: Equilibrium conditions in the urban system

using the Lambert W function

By definition, the zero expected profit condition for each firm in city r is given by

∑

s

Ls

∫ mx
rs

0
[prs(m)− τrsmwr] qrs(m)dGr(m) = Fwr. (69)

Furthermore, each labor market clears in equilibrium, which requires that

NE
r

[∑

s

Lsτrs

∫ mx
rs

0
mqrs(m)dGr(m) + F

]
= Sr. (70)

Last, in equilibrium trade must be balanced for each city

NE
r

∑

s 6=r

Ls

∫ mx
rs

0
prs(m)qrs(m)dGr(m) = Lr

∑

s 6=r

NE
s

∫ mx
sr

0
psr(m)qsr(m)dGs(m). (71)
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We now restate the foregoing conditions (69)–(71) in terms of the Lambert W function.

First, using (29), the labor market clearing condition can be rewritten as follows:

NE
r

{
1

α

∑

s

Lsτrs

∫ mx
rs

0
m

[
1−W

(
e
m

mx
rs

)]
dGr(m) + F

}
= Sr. (72)

Second, plugging (29) into (69), zero expected profits require that

1

α

∑

s

Lsτrs

∫ mx
rs

0
m

[
W

(
e
m

mx
rs

)−1

+W

(
e
m

mx
rs

)
− 2

]
dGr(m) = F. (73)

Last, the trade balance condition is given by

NE
r wr

∑

s 6=r

Lsτrs

∫ mx
rs

0
m

[
W

(
e

m

mx
rs

)−1

− 1

]
dGr(m)

= Lr

∑

s 6=r

NE
s τsrws

∫ mx
sr

0
m

[
W

(
e

m

mx
sr

)−1

− 1

]
dGs(m). (74)

Applying the city-specific Pareto distribution Gr(m) = (m/mmax
r )k to (72)–(74) yields, using the results

of Appendix B, expressions (30)–(32) given in the main text.

Appendix D: Data description

msa-level data. We construct a dataset for 356 metropolitan statistical areas (see Table 1 for a full

list of the msas). The bulk of our msa-level data comes from the 2007 American Community Survey

(acs) of the US Census, from the Bureau of Economic Analysis (bea) and from the Bureau of Labor

Statistics (bls). The geographical coordinates of each msa are computed as the centroid of its constituent

counties’ geographical coordinates. The latter are obtained from the 2000 US Census Gazetteer county

geography file, and the msa-level aggregation is carried out using the county-to-msa concordance tables

for 2007. We then construct our measure of distance between two msas as drs = cos−1
(
sin(latr) sin(lats)+

cos(|lonr−lons|) cos(latr)× cos(lats)
)
×6, 378.137 using the great circle formula, where latr and lonr are the

geographical coordinates of the msa. The internal distance of an msa is defined as drr ≡ (2/3)
√

surfacer/π

as in Redding and Venables (2004). All msa surface measures are given in square kilometers and include

only land surface of the msa’s constitutent counties. That data is obtained from the 2000 US Census

Gazetteer, and is aggregated from the county to the msa level.

We further obtain total gross domestic product by msa from the bea metropolitan GDP files. Total

employment at the msa level is obtained from the 2007 bls employment flat files (we use aggregate values

for ‘All occupations’). Using gross domestic product, total employment, and the average number of hours

worked allows us to recover our measure of average msa productivity (GDP per employee). Wages at

the msa level for 2007 are computed as total labor expenses (compensation of employees plus employer

contributions for employee pension and insurance funds plus employer contributions for government social

insurance) divided by total msa employment. Data to compute total labor expenses is provided by the bea.

Last, county-level data on natural amenities are from 1999 and provided by the US Department of

Agriculture (usda). The usda data includes six measures of climate, topography, and water area that
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reflect environmental attributes usually valued by people. We use the standardized amenity score from

that data as a proxy for our observed amenities. We aggregate the county-level amenities up to the msa

level by using the county-to-msa concordance table and by weighting each county by its share in the total

msa land surface.

Urban frictions data. Total msa population is taken from the 2007 acs. The 2007 acs further

provides msa-level data on average weekly hours worked and on average (one-way) commuting time in

minutes. Both pieces of information are used to compute the internal cutoffs md
r , the aggregate labor

supply hrLr, and the effective labor supply Sr.

Trade frictions data. We estimate a gravity equation on state-to-state trade flows to obtain an

estimate of the distance elasticity γ. To this end, we use aggregate bilateral trade flows Xrs from the 2007

Commodity Flow Survey (cfs) of the Bureau of Transportation Statistics (bts) for the lower 48 contiguous

US states, as these are the states containing the msas that will be used in our analysis. We work at the

state level since msa trade flows from the cfs public files can only be meaningfully exploited for a relatively

small sample of large ‘cfs regions’. Duranton et al. (2011, p.10), for example, work with that data to

estimate the distance elasticity of trade flows. We ran several robustness checks using their estimate of

γ instead of ours. Results are little sensitive to that choice. As to the specification of trade costs τrs we

stick to standard practice and assume that τrs ≡ dγrs, where drs stands for the distance between r and s

in kilometers computed using the great circle formula given above.35 In that case, latr and lonr denote

the coordinates of the capital of state r, measured in radians, which are taken from Anderson and van

Wincoop’s (2003) dataset.

35Using cfs trade data, Duranton et al. (2011) show that the distance elasticity of trade within the US is basically

insensitive to how distance is exactly measured (euclidian distance vs. various distance measures based on current

or historical highway grids).
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Table 1: msa variables and descriptives for the initial equilibrium

fips msa name State Lr/L µ̂max

r
1/mr θ̂r Ao

r
Âu

r

10180 Abilene TX 0.2268 6.8852 0.8328 0.3925 1.3141 -0.6556

10420 Akron OH 0.9956 17.4352 0.8212 0.2473 -2.2749 1.0062

10500 Albany GA 0.2336 28.3000 0.7182 0.4608 -0.0435 -0.4451

10580 Albany-Schenectady-Troy NY 1.2149 15.6558 0.8722 0.2015 -0.2432 1.1317

10740 Albuquerque NM 1.1889 11.6475 0.8694 0.2232 3.7322 0.9275

10780 Alexandria LA 0.2133 14.7747 0.7632 0.5445 -0.2067 -0.5842

10900 Allentown-Bethlehem-Easton PA-NJ 1.1444 22.9469 0.8678 0.3088 0.3026 0.9760

11020 Altoona PA 0.1787 28.9660 0.6877 0.5223 -0.8600 -0.7009

11100 Amarillo TX 0.3449 7.1209 0.8305 0.3277 1.6304 -0.2289

11180 Ames IA 0.1207 0.7978 0.9817 0.6556 -3.5400 -1.1175

11300 Anderson IN 0.1869 6.1621 0.8247 0.8718 -3.4700 -0.6463

11340 Anderson SC 0.2562 16.3593 0.7543 0.5571 0.7100 -0.4872

11460 Ann Arbor MI 0.4983 2.9986 0.9738 0.2977 -2.1900 0.1721

11500 Anniston-Oxford AL 0.1610 13.1516 0.7430 0.5613 0.2200 -0.9536

11540 Appleton WI 0.3104 9.1579 0.7999 0.3684 -2.7304 -0.0904

11700 Asheville NC 0.5756 31.3698 0.7609 0.3163 2.1012 0.2978

12020 Athens-Clarke County GA 0.2668 15.4460 0.7858 0.4865 -1.0511 -0.3069

12060 Atlanta-Sandy Springs-Marietta GA 7.5152 7.9312 1.0828 0.1174 0.2253 2.7880

12100 Atlantic City-Hammonton NJ 0.3853 4.3460 0.9247 0.3301 -0.0400 -0.2364

12220 Auburn-Opelika AL 0.1858 14.1079 0.7298 0.6358 -0.2400 -0.7240

12260 Augusta-Richmond County GA-SC 0.7524 23.6409 0.8053 0.2920 -0.0192 0.6829

12420 Austin-Round Rock TX 2.2752 5.6156 0.9979 0.1860 1.6141 1.5231

12540 Bakersfield CA 1.1257 8.3291 0.9841 0.2453 4.8400 0.6741

12580 Baltimore-Towson MD 3.7983 12.0935 0.9856 0.1519 -0.3557 2.1378

12620 Bangor ME 0.2118 5.6207 0.8107 0.5506 -0.5200 -0.5302

12700 Barnstable Town MA 0.3163 2.9345 0.8556 0.4759 1.5200 -0.4993

12940 Baton Rouge LA 1.0962 3.7242 1.0012 0.2569 -0.6186 0.9311

12980 Battle Creek MI 0.1945 7.2642 0.8301 0.4982 -2.7300 -0.6453

13020 Bay City MI 0.1531 6.5755 0.7780 0.7995 -1.5300 -0.9167

13140 Beaumont-Port Arthur TX 0.5356 8.3601 0.8672 0.2801 0.9407 0.1728

13380 Bellingham WA 0.2748 1.1589 0.9747 0.4955 5.2600 -0.7955

13460 Bend OR 0.2193 2.3869 0.8996 0.4620 6.1000 -1.0336

13740 Billings MT 0.2131 7.1640 0.7761 0.3735 2.4532 -0.6830

13780 Binghamton NY 0.3508 56.9535 0.6866 0.3785 -0.9289 0.0588

13820 Birmingham-Hoover AL 1.5777 5.8973 1.0014 0.2055 0.5780 1.2351

13900 Bismarck ND 0.1470 12.2467 0.7085 0.4403 -1.6258 -0.7564

13980 Blacksburg-Christiansburg-Radford VA 0.2244 10.1677 0.8144 0.5208 0.5141 -0.5979

14020 Bloomington IN 0.2616 14.7889 0.8140 0.5467 -0.4507 -0.3408

14060 Bloomington-Normal IL 0.2338 2.4247 0.9891 0.3871 -3.5700 -0.4375

14260 Boise City-Nampa ID 0.8367 10.6193 0.8491 0.2399 2.2919 0.6976

14460 Boston-Cambridge-Quincy MA-NH 6.3819 2.7007 1.1870 0.1098 0.1444 2.4955

14500 Boulder CO 0.4132 0.6188 1.1168 0.3373 5.8200 -0.6755

14540 Bowling Green KY 0.1651 12.3177 0.7702 0.5611 -0.2160 -0.8510

14740 Bremerton-Silverdale WA 0.3370 1.2068 1.0491 0.7249 2.6100 -0.6981

14860 Bridgeport-Stamford-Norwalk CT 1.2742 0.0329 1.8325 0.2506 2.2500 -0.2081

15180 Brownsville-Harlingen TX 0.5512 55.3719 0.5912 0.3178 2.4600 0.3482

15260 Brunswick GA 0.1449 13.3594 0.7523 0.6313 1.3530 -1.0593

15380 Buffalo-Niagara Falls NY 1.6061 15.4178 0.8225 0.1730 -0.6399 1.4505

15500 Burlington NC 0.2069 16.5166 0.7377 0.6324 -0.9600 -0.6176

15540 Burlington-South Burlington VT 0.2952 2.2778 0.9027 0.4271 -0.1238 -0.3845

15940 Canton-Massillon OH 0.5797 27.4059 0.7541 0.3382 -1.4796 0.4955

15980 Cape Coral-Fort Myers FL 0.8407 2.0378 0.9635 0.3210 5.2300 0.1676

16220 Casper WY 0.1021 0.0797 1.3629 0.4917 2.4900 -1.9697

16300 Cedar Rapids IA 0.3599 6.3374 0.8708 0.3126 -3.3035 0.0590

16580 Champaign-Urbana IL 0.3145 14.7922 0.8363 0.3848 -4.3383 0.0884

16620 Charleston WV 0.4327 6.2623 0.9251 0.3322 -0.7294 0.0286

16700 Charleston-North Charleston-Summerville SC 0.8970 8.8536 0.8690 0.2777 0.5686 0.7409

16740 Charlotte-Gastonia-Concord NC-SC 2.3512 0.6377 1.3186 0.1561 0.1000 1.3196

16820 Charlottesville VA 0.2744 7.2636 0.9001 0.4341 -0.0364 -0.4526

16860 Chattanooga TN-GA 0.7326 8.8814 0.8897 0.2830 0.2832 0.5342

16940 Cheyenne WY 0.1229 2.1311 0.9176 0.5112 3.0500 -1.4960

16980 Chicago-Naperville-Joliet IL-IN-WI 13.5596 7.6522 1.1400 0.0867 -2.1021 3.4958

17020 Chico CA 0.3115 5.1269 0.8541 0.5341 5.1100 -0.5608

17140 Cincinnati-Middletown OH-KY-IN 3.0376 14.2620 0.9455 0.1438 -0.7916 2.0448

17300 Clarksville TN-KY 0.3727 1.4179 1.0663 0.5319 0.0733 -0.3729

17420 Cleveland TN 0.1582 3.0055 0.9115 0.7279 0.8781 -1.1302

17460 Cleveland-Elyria-Mentor OH 2.9846 7.3233 0.9836 0.1352 -1.4310 1.9676

17660 Coeur d’Alene ID 0.1914 8.3418 0.7161 0.6066 3.5000 -0.9011

17780 College Station-Bryan TX 0.2895 47.5407 0.7123 0.4095 0.8622 -0.2296

17820 Colorado Springs CO 0.8671 7.0613 0.8860 0.2838 5.3867 0.3780

17860 Columbia MO 0.2311 16.7125 0.7364 0.4196 0.1054 -0.4706

17900 Columbia SC 1.0194 22.2288 0.8323 0.2385 0.5017 0.9371

17980 Columbus GA-AL 0.4025 8.7851 0.8541 0.3100 -0.2353 -0.0490

18020 Columbus IN 0.1064 2.9595 0.8788 0.4856 -2.3800 -1.3775

18140 Columbus OH 2.4975 11.5892 0.9535 0.1398 -1.9162 1.8984

18580 Corpus Christi TX 0.5899 5.0627 0.8543 0.2746 2.8551 0.1577
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18700 Corvallis OR 0.1159 0.1014 1.2152 0.7211 3.1000 -1.8133

19060 Cumberland MD-WV 0.1414 56.7425 0.6576 0.7389 1.0076 -0.9889

19100 Dallas-Fort Worth-Arlington TX 8.7483 3.2987 1.2029 0.0923 0.6857 2.8079

19140 Dalton GA 0.1908 15.8567 0.7386 0.3339 0.4652 -0.8035

19180 Danville IL 0.1156 13.3585 0.7769 0.7748 -3.2100 -1.0515

19260 Danville VA 0.1506 34.1566 0.7025 0.6804 -0.3000 -0.8908

19340 Davenport-Moline-Rock Island IA-IL 0.5355 8.2798 0.8791 0.2759 -2.6893 0.4377

19380 Dayton OH 1.1895 14.1872 0.8640 0.1988 -2.1260 1.1962

19460 Decatur AL 0.2125 3.5335 0.9214 0.6612 0.7910 -0.8247

19500 Decatur IL 0.1548 2.7975 0.8839 0.4092 -2.7900 -0.9344

19660 Deltona-Daytona Beach-Ormond Beach FL 0.7124 22.2777 0.7462 0.3743 3.4500 0.3884

19740 Denver-Aurora CO 3.4326 2.2957 1.1516 0.1477 4.1942 1.7018

19780 Des Moines-West Des Moines IA 0.7782 2.2274 1.0158 0.2050 -2.0346 0.6429

19820 Detroit-Warren-Livonia MI 6.3602 8.3299 1.0380 0.1089 -1.6704 2.7501

20020 Dothan AL 0.1986 49.5100 0.6561 0.4212 -0.4149 -0.5370

20100 Dover DE 0.2168 1.9540 1.0020 0.5895 -0.0700 -0.8842

20220 Dubuque IA 0.1315 5.7814 0.7869 0.3977 -0.7900 -1.1171

20260 Duluth MN-WI 0.3905 18.6402 0.7996 0.3678 -0.8127 0.1938

20500 Durham NC 0.6828 0.8200 1.1939 0.2552 0.0966 0.1845

20740 Eau Claire WI 0.2247 12.7566 0.7611 0.4796 -2.6695 -0.3365

20940 El Centro CA 0.2304 19.7182 0.7872 0.4081 6.4500 -0.8598

21060 Elizabethtown KY 0.1589 3.7636 0.8891 0.5914 -0.8465 -1.0560

21140 Elkhart-Goshen IN 0.2818 9.4337 0.7923 0.2901 -2.7200 -0.2450

21300 Elmira NY 0.1253 16.7836 0.7000 0.6243 -1.1300 -1.0690

21340 El Paso TX 1.0459 2.2083 0.9271 0.2441 4.4600 0.5021

21500 Erie PA 0.3973 18.7253 0.7395 0.3204 -0.5700 0.0764

21660 Eugene-Springfield OR 0.4891 13.2218 0.7821 0.3197 4.2900 0.0543

21780 Evansville IN-KY 0.4979 8.0962 0.8860 0.2898 -1.6375 0.2844

22020 Fargo ND-MN 0.2739 4.1400 0.8364 0.3067 -4.5908 -0.0388

22140 Farmington NM 0.1743 0.2874 1.2203 0.5778 2.8300 -1.3307

22180 Fayetteville NC 0.4968 0.7242 1.1132 0.3601 -0.9161 -0.1293

22220 Fayetteville-Springdale-Rogers AR-MO 0.6203 13.9314 0.8230 0.2715 0.8552 0.4160

22380 Flagstaff AZ 0.1814 41.4362 0.7797 0.4704 4.9300 -0.8937

22420 Flint MI 0.6189 11.2936 0.8235 0.4086 -1.9000 0.4963

22500 Florence SC 0.2829 14.4850 0.7801 0.4358 -0.2137 -0.3219

22520 Florence-Muscle Shoals AL 0.2038 22.0682 0.7281 0.6420 0.8059 -0.6681

22540 Fond du Lac WI 0.1411 5.1570 0.8386 0.6231 -1.9200 -1.0104

22660 Fort Collins-Loveland CO 0.4094 9.8391 0.8295 0.3890 5.6200 -0.3039

22900 Fort Smith AR-OK 0.4124 21.2879 0.7892 0.3342 1.6228 -0.0124

23020 Fort Walton Beach-Crestview-Destin FL 0.2584 0.3985 1.1155 0.4967 2.0100 -0.9455

23060 Fort Wayne IN 0.5838 20.3049 0.7882 0.2692 -3.0754 0.5929

23420 Fresno CA 1.2803 22.9506 0.8468 0.2171 6.0300 0.8406

23460 Gadsden AL 0.1469 27.7629 0.6669 0.7121 0.9600 -1.0397

23540 Gainesville FL 0.3660 7.8664 0.8210 0.3731 2.0892 -0.2095

23580 Gainesville GA 0.2565 4.7162 0.8383 0.6287 0.9600 -0.6703

24020 Glens Falls NY 0.1835 53.2073 0.6769 0.6495 -0.3136 -0.6305

24140 Goldsboro NC 0.1617 4.7743 0.8234 0.6350 -1.4100 -0.9470

24220 Grand Forks ND-MN 0.1391 7.5933 0.7678 0.4540 -4.2873 -0.6426

24300 Grand Junction CO 0.1980 14.4225 0.7324 0.5205 2.2600 -0.7599

24340 Grand Rapids-Wyoming MI 1.1058 14.8202 0.8746 0.2091 -2.1226 1.1623

24500 Great Falls MT 0.1164 3.0799 0.7954 0.5633 2.2000 -1.3183

24540 Greeley CO 0.3470 11.1165 0.8543 0.6195 1.7000 -0.2422

24580 Green Bay WI 0.4287 7.7067 0.8387 0.2912 -1.3945 0.1489

24660 Greensboro-High Point NC 0.9944 12.2863 0.8764 0.2038 -0.2512 0.8794

24780 Greenville NC 0.2455 8.4053 0.8048 0.4570 -1.9108 -0.3848

24860 Greenville-Mauldin-Easley SC 0.8739 29.0690 0.7805 0.2293 1.3467 0.7392

25060 Gulfport-Biloxi MS 0.3296 3.7705 0.8944 0.4062 0.1310 -0.3076

25180 Hagerstown-Martinsburg MD-WV 0.3718 29.3045 0.7547 0.6204 0.3042 -0.0839

25260 Hanford-Corcoran CA 0.2119 4.4956 0.8817 0.5882 3.4800 -0.9992

25420 Harrisburg-Carlisle PA 0.7529 15.7008 0.8614 0.2220 -0.0004 0.5819

25500 Harrisonburg VA 0.1674 3.5773 0.9210 0.4938 1.2500 -1.0739

25540 Hartford-West Hartford-East Hartford CT 1.6929 0.6312 1.3157 0.1934 1.4760 0.8809

25620 Hattiesburg MS 0.1967 14.5668 0.7576 0.6026 -0.2014 -0.6437

25860 Hickory-Lenoir-Morganton NC 0.5132 43.2249 0.7227 0.3150 1.5055 0.2302

25980 Hinesville-Fort Stewart GA 0.1022 0.0097 1.7152 1.4824 0.8063 -2.4818

26100 Holland-Grand Haven MI 0.3690 4.6934 0.8693 0.4246 -0.0400 -0.1742

26300 Hot Springs AR 0.1372 11.9767 0.7219 0.7581 1.6400 -1.1335

26380 Houma-Bayou Cane-Thibodaux LA 0.2863 2.3685 0.9718 0.4086 0.3192 -0.5579

26420 Houston-Sugar Land-Baytown TX 8.0123 0.7875 1.4273 0.1036 0.8426 2.4951

26580 Huntington-Ashland WV-KY-OH 0.4043 18.9859 0.7879 0.3638 -0.1699 0.0365

26620 Huntsville AL 0.5504 4.8277 0.9105 0.2864 -0.9066 0.2760

26820 Idaho Falls ID 0.1700 14.9270 0.6994 0.6242 1.7783 -0.8152

26900 Indianapolis-Carmel IN 2.4131 6.4117 1.0203 0.1453 -2.5367 1.8239

26980 Iowa City IA 0.2093 3.0028 0.9098 0.4185 -2.9476 -0.5311

27060 Ithaca NY 0.1439 7.6229 0.7882 0.5491 -0.2800 -0.9925

27100 Jackson MI 0.2321 5.6531 0.8683 0.6124 -2.4500 -0.4931

27140 Jackson MS 0.7603 9.3264 0.8735 0.2701 -0.6024 0.6792
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27180 Jackson TN 0.1604 8.0248 0.7820 0.4913 -1.6345 -0.8225

27260 Jacksonville FL 1.8519 6.0828 0.9489 0.1930 2.0244 1.3020

27340 Jacksonville NC 0.2317 0.1526 1.2201 0.6158 0.7400 -1.3510

27500 Janesville WI 0.2272 17.1165 0.7514 0.5567 -2.6200 -0.3910

27620 Jefferson City MO 0.2074 21.2752 0.7585 0.4518 0.3296 -0.5943

27740 Johnson City TN 0.2755 15.4626 0.7613 0.4448 1.5055 -0.4559

27780 Johnstown PA 0.2064 47.5556 0.6679 0.5599 -0.2300 -0.5483

27860 Jonesboro AR 0.1657 19.0537 0.7332 0.4910 -2.2503 -0.6718

27900 Joplin MO 0.2438 33.7469 0.6737 0.4025 -1.3200 -0.2872

28020 Kalamazoo-Portage MI 0.4602 10.9030 0.8445 0.3422 -1.3239 0.2034

28100 Kankakee-Bradley IL 0.1576 66.9572 0.6773 0.7130 -3.3000 -0.6326

28140 Kansas City MO-KS 2.8265 9.2978 0.9719 0.1388 -1.3222 2.0201

28420 Kennewick-Pasco-Richland WA 0.3260 1.7999 0.9386 0.4454 0.7491 -0.3261

28660 Killeen-Temple-Fort Hood TX 0.5268 2.1655 1.0220 0.3488 1.5578 -0.0822

28700 Kingsport-Bristol-Bristol TN-VA 0.4323 20.7011 0.7895 0.3835 0.3622 0.0800

28740 Kingston NY 0.2589 38.4944 0.7621 0.7757 0.7000 -0.4394

28940 Knoxville TN 0.9702 10.7076 0.8633 0.2284 1.0960 0.7774

29020 Kokomo IN 0.1421 4.4454 0.8611 0.4794 -4.4522 -0.9032

29100 La Crosse WI-MN 0.1864 15.4794 0.7197 0.4276 -1.1484 -0.6119

29140 Lafayette IN 0.2736 6.6786 0.8963 0.4269 -3.4119 -0.2047

29180 Lafayette LA 0.3652 0.3936 1.1340 0.3333 -0.9092 -0.4845

29340 Lake Charles LA 0.2732 0.2160 1.2988 0.4158 0.1230 -0.8452

29460 Lakeland-Winter Haven FL 0.8182 41.3451 0.7338 0.3320 3.9800 0.5254

29540 Lancaster PA 0.7096 23.6630 0.8138 0.2773 0.4500 0.4974

29620 Lansing-East Lansing MI 0.6498 8.5097 0.9034 0.3102 -3.3358 0.6664

29700 Laredo TX 0.3319 40.7539 0.6586 0.3942 1.1200 -0.0710

29740 Las Cruces NM 0.2830 14.1950 0.7658 0.4945 4.7700 -0.5204

29820 Las Vegas-Paradise NV 2.6143 5.7538 0.9982 0.1449 4.8600 1.4990

29940 Lawrence KS 0.1616 9.0883 0.7461 0.6893 0.3600 -0.9008

30020 Lawton OK 0.1620 1.7247 0.9186 0.4717 2.2900 -1.2620

30140 Lebanon PA 0.1821 21.6701 0.7301 0.6784 -0.6600 -0.7918

30340 Lewiston-Auburn ME 0.1521 6.7201 0.7348 0.6650 -0.3200 -0.9631

30460 Lexington-Fayette KY 0.6366 7.4339 0.8874 0.2408 -2.0342 0.5128

30620 Lima OH 0.1498 6.3170 0.7978 0.4620 -2.3700 -0.9154

30700 Lincoln NE 0.4160 6.3780 0.8194 0.2917 -2.8183 0.2242

30780 Little Rock-North Little Rock-Conway AR 0.9487 8.6504 0.8992 0.2235 -0.0673 0.8521

30860 Logan UT-ID 0.1724 17.5016 0.6920 0.6184 2.2845 -0.8079

30980 Longview TX 0.2899 3.1890 0.9405 0.4235 1.0970 -0.5565

31020 Longview WA 0.1430 5.9983 0.8127 0.8130 4.5400 -1.3338

31100 Los Angeles-Long Beach-Santa Ana CA 18.3301 4.3306 1.2309 0.0708 10.0712 2.8862

31140 Louisville/Jefferson County KY-IN 1.7564 14.2754 0.9145 0.1752 -0.7687 1.5113

31180 Lubbock TX 0.3804 12.8002 0.7377 0.3094 1.7950 -0.0905

31340 Lynchburg VA 0.3468 21.0406 0.7998 0.4312 0.4764 -0.1345

31420 Macon GA 0.3272 31.5646 0.7452 0.3784 0.9051 -0.1751

31460 Madera CA 0.2086 6.7275 0.8891 0.8123 6.0000 -1.0943

31540 Madison WI 0.7910 4.1702 0.9806 0.2343 -0.4945 0.6170

31700 Manchester-Nashua NH 0.5727 0.1167 1.4554 0.5151 0.0700 -0.3611

31900 Mansfield OH 0.1789 33.4517 0.6730 0.4979 -2.8800 -0.5658

32580 McAllen-Edinburg-Mission TX 1.0115 78.4494 0.6015 0.2479 0.4600 1.0886

32780 Medford OR 0.2837 7.3664 0.7742 0.3762 4.5000 -0.5412

32820 Memphis TN-MS-AR 1.8230 5.5326 0.9880 0.1653 -0.7140 1.4824

32900 Merced CA 0.3495 3.4046 0.9806 0.6661 4.5100 -0.5673

33100 Miami-Fort Lauderdale-Pompano Beach FL 7.7064 5.1829 1.0756 0.1063 5.2315 2.4562

33140 Michigan City-La Porte IN 0.1563 21.9162 0.7391 0.6279 -1.8700 -0.8200

33260 Midland TX 0.1800 0.0677 1.2915 0.3498 1.4200 -1.5392

33340 Milwaukee-Waukesha-West Allis WI 2.1987 5.9256 0.9583 0.1410 -1.7072 1.6745

33460 Minneapolis-St. Paul-Bloomington MN-WI 4.5673 4.2763 1.0673 0.1133 -2.1830 2.4717

33540 Missoula MT 0.1504 2.8725 0.8180 0.4512 1.7400 -1.0344

33660 Mobile AL 0.5757 9.1311 0.8016 0.3067 1.5200 0.2423

33700 Modesto CA 0.7278 6.4113 0.9156 0.4128 7.2100 0.0268

33740 Monroe LA 0.2453 9.2380 0.7899 0.4184 0.3390 -0.5074

33780 Monroe MI 0.2187 2.0031 0.9750 0.9408 -1.4300 -0.7490

33860 Montgomery AL 0.5210 12.6484 0.8354 0.3087 0.4625 0.2498

34060 Morgantown WV 0.1677 4.0622 0.9172 0.6007 -0.5645 -0.9222

34100 Morristown TN 0.1916 17.5432 0.7285 0.6252 1.4428 -0.8147

34580 Mount Vernon-Anacortes WA 0.1657 0.7668 1.0340 0.7719 4.9400 -1.4000

34620 Muncie IN 0.1643 21.3999 0.7009 0.5363 -2.6000 -0.6699

34740 Muskegon-Norton Shores MI 0.2483 10.5424 0.7619 0.4962 -0.4000 -0.4569

34820 Myrtle Beach-North Myrtle Beach-Conway SC 0.3558 14.1273 0.7514 0.3492 0.8800 -0.1685

34900 Napa CA 0.1887 0.7977 1.1158 0.6025 7.5300 -1.5827

34940 Naples-Marco Island FL 0.4496 0.8553 1.0987 0.3608 5.0000 -0.4961

34980 Nashville-Davidson–Murfreesboro–Franklin TN 2.1660 8.8103 0.9775 0.1761 -0.8913 1.6814

35300 New Haven-Milford CT 1.2037 0.3565 1.3393 0.3373 2.5200 0.3149

35380 New Orleans-Metairie-Kenner LA 1.4669 0.3827 1.3139 0.1997 0.3337 0.8483

35620 New York-Northern New Jersey-Long Island NY-NJ-PA 26.7870 2.3289 1.4318 0.0708 0.7740 3.7219

35660 Niles-Benton Harbor MI 0.2272 4.2225 0.8899 0.4910 -0.3000 -0.7112

35980 Norwich-New London CT 0.3806 2.5282 0.9939 0.3834 2.4300 -0.4626
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36100 Ocala FL 0.4625 26.5691 0.7385 0.4508 2.5900 0.0392

36140 Ocean City NJ 0.1373 1.0674 0.9729 0.6085 0.0700 -1.4334

36220 Odessa TX 0.1845 1.7012 0.8694 0.4434 2.5000 -1.1410

36260 Ogden-Clearfield UT 0.7379 7.3733 0.8296 0.3433 4.0883 0.3479

36420 Oklahoma City OK 1.6984 8.9525 0.9256 0.1702 0.1199 1.4212

36500 Olympia WA 0.3396 2.6762 0.8761 0.5266 3.3200 -0.5078

36540 Omaha-Council Bluffs NE-IA 1.1815 4.6939 0.9594 0.1726 -1.6836 1.1351

36740 Orlando-Kissimmee FL 2.8935 9.3348 0.9478 0.1484 3.6792 1.6530

36780 Oshkosh-Neenah WI 0.2308 3.4099 0.8448 0.3631 -1.3700 -0.5731

36980 Owensboro KY 0.1596 5.0431 0.8563 0.4904 -0.9396 -0.9497

37100 Oxnard-Thousand Oaks-Ventura CA 1.1366 1.0892 1.1665 0.3101 11.1700 -0.0195

37340 Palm Bay-Melbourne-Titusville FL 0.7633 7.0268 0.8433 0.3242 3.9300 0.3194

37460 Panama City-Lynn Haven FL 0.2335 3.9684 0.8128 0.4859 2.1500 -0.7925

37620 Parkersburg-Marietta-Vienna WV-OH 0.2287 20.4051 0.7635 0.4824 -0.0229 -0.5302

37700 Pascagoula MS 0.2164 3.3176 0.8870 0.6623 0.1912 -0.7469

37860 Pensacola-Ferry Pass-Brent FL 0.6455 10.5757 0.8059 0.3574 2.0978 0.3456

37900 Peoria IL 0.5285 6.0365 0.9428 0.2890 -2.5036 0.3764

37980 Philadelphia-Camden-Wilmington PA-NJ-DE-MD 8.2969 5.0519 1.1876 0.1023 -0.6748 2.8345

38060 Phoenix-Mesa-Scottsdale AZ 5.9500 13.0025 0.9713 0.1114 4.3136 2.4388

38220 Pine Bluff AR 0.1445 18.4953 0.7485 0.5508 -1.2731 -0.8725

38300 Pittsburgh PA 3.3537 10.5364 0.9970 0.1425 0.4012 2.0415

38340 Pittsfield MA 0.1848 0.0590 1.5480 0.7997 0.8100 -1.5454

38540 Pocatello ID 0.1247 18.4792 0.6806 0.5365 1.9030 -1.1149

38860 Portland-South Portland-Biddeford ME 0.7305 0.3729 1.2367 0.3868 0.9595 0.1744

38900 Portland-Vancouver-Beaverton OR-WA 3.0966 2.5795 1.0900 0.1534 2.8130 1.7475

38940 Port St. Lucie FL 0.5696 4.4925 0.8792 0.4656 5.1827 -0.0890

39100 Poughkeepsie-Newburgh-Middletown NY 0.9537 57.5790 0.7869 0.3958 0.0107 0.8914

39140 Prescott AZ 0.3027 55.8791 0.7200 0.5665 5.2100 -0.4084

39300 Providence-New Bedford-Fall River RI-MA 2.2790 1.8282 1.1372 0.2242 1.2849 1.3694

39340 Provo-Orem UT 0.7023 15.6423 0.8210 0.3378 3.0296 0.5132

39380 Pueblo CO 0.2200 33.0571 0.6806 0.5804 2.1100 -0.5738

39460 Punta Gorda FL 0.2176 4.7904 0.8279 0.6776 5.1000 -1.0319

39540 Racine WI 0.2777 2.6053 0.9046 0.5556 -0.5100 -0.5717

39580 Raleigh-Cary NC 1.4914 4.1913 0.9997 0.2143 -0.6762 1.1883

39660 Rapid City SD 0.1712 10.5487 0.7744 0.4558 -0.3579 -0.7024

39740 Reading PA 0.5722 12.9659 0.8697 0.3670 -0.7300 0.2974

39820 Redding CA 0.2554 5.9179 0.8368 0.4672 5.6900 -0.7588

39900 Reno-Sparks NV 0.5841 6.1702 0.9153 0.2685 6.7038 -0.0559

40060 Richmond VA 1.7268 11.1761 0.9742 0.1846 -0.9568 1.4730

40140 Riverside-San Bernardino-Ontario CA 5.8104 104.4265 0.8632 0.1695 4.3817 2.5456

40220 Roanoke VA 0.4222 22.5390 0.7805 0.3012 0.9380 0.0199

40340 Rochester MN 0.2578 7.1786 0.8243 0.3375 -3.3458 -0.2406

40380 Rochester NY 1.4670 9.7948 0.9057 0.1746 -0.6948 1.3292

40420 Rockford IL 0.5015 16.7848 0.7779 0.3553 -2.7901 0.3797

40580 Rocky Mount NC 0.2073 6.0239 0.8554 0.4688 -1.7475 -0.6464

40660 Rome GA 0.1361 17.3345 0.7232 0.6475 0.3300 -1.0785

40900 Sacramento–Arden-Arcade–Roseville CA 2.9770 4.8303 1.0444 0.1708 5.4091 1.5526

40980 Saginaw-Saginaw Township North MI 0.2880 16.5948 0.7583 0.3910 -3.3300 -0.0839

41060 St. Cloud MN 0.2642 12.5971 0.7626 0.4347 -3.0004 -0.1386

41100 St. George UT 0.1905 23.2639 0.6948 0.4957 2.5700 -0.7385

41140 St. Joseph MO-KS 0.1756 10.6024 0.7922 0.5409 -1.4641 -0.7059

41180 St. Louis MO-IL 3.9914 19.9079 0.9226 0.1312 -0.4277 2.3707

41420 Salem OR 0.5505 9.5532 0.8053 0.3850 3.4215 0.1330

41500 Salinas CA 0.5803 1.2221 1.1497 0.3426 9.2400 -0.5045

41540 Salisbury MD 0.1703 13.6356 0.7665 0.6063 -0.3934 -0.8133

41620 Salt Lake City UT 1.5660 5.5353 0.9849 0.1645 3.3545 1.1401

41660 San Angelo TX 0.1539 11.3999 0.7550 0.5001 1.5945 -0.9984

41700 San Antonio TX 2.8340 12.2914 0.9238 0.1656 2.1287 1.8188

41740 San Diego-Carlsbad-San Marcos CA 4.2351 1.5943 1.2222 0.1332 9.7800 1.4266

41780 Sandusky OH 0.1101 4.8876 0.7919 0.5651 -0.9100 -1.3725

41860 San Francisco-Oakland-Fremont CA 5.9848 0.3531 1.4952 0.1203 7.3604 1.6192

41940 San Jose-Sunnyvale-Santa Clara CA 2.5677 0.1447 1.5878 0.1526 5.5612 0.8121

42020 San Luis Obispo-Paso Robles CA 0.3736 2.4081 1.0086 0.3809 7.8700 -0.6538

42060 Santa Barbara-Santa Maria-Goleta CA 0.5754 0.8643 1.1438 0.2810 10.9700 -0.5659

42100 Santa Cruz-Watsonville CA 0.3584 0.6286 1.1396 0.6419 8.4900 -1.0716

42140 Santa Fe NM 0.2035 0.1706 1.2396 0.6477 3.0200 -1.2264

42220 Santa Rosa-Petaluma CA 0.6612 1.8173 1.0370 0.3670 7.9300 -0.2054

42260 Bradenton-Sarasota-Venice FL 0.9783 8.0869 0.8481 0.2326 4.7123 0.5228

42340 Savannah GA 0.4688 9.2001 0.8077 0.3385 0.7595 0.0822

42540 Scranton–Wilkes-Barre PA 0.7822 62.6807 0.7348 0.2540 0.3497 0.7451

42660 Seattle-Tacoma-Bellevue WA 4.7113 1.1719 1.2432 0.1332 4.6088 1.8885

42680 Sebastian-Vero Beach FL 0.1877 1.2555 0.9359 0.6381 4.7200 -1.2862

43100 Sheboygan WI 0.1630 3.2650 0.8625 0.4794 -0.3700 -1.0073

43300 Sherman-Denison TX 0.1689 20.5729 0.7343 0.7441 0.7800 -0.9061

43340 Shreveport-Bossier City LA 0.5518 0.5061 1.2082 0.2672 0.4263 -0.0654

43580 Sioux City IA-NE-SD 0.2033 6.7056 0.8078 0.3518 -1.6477 -0.5531

43620 Sioux Falls SD 0.3234 0.9176 1.0383 0.3194 -3.1981 -0.1810
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Table 1: msa variables and descriptives for the initial equilibrium

fips msa name State Lr/L µ̂max

r
1/mr θ̂r Ao

r
Âu

r

43780 South Bend-Mishawaka IN-MI 0.4508 5.9962 0.9017 0.3487 -2.3182 0.1576

43900 Spartanburg SC 0.3923 11.2840 0.7992 0.3525 0.5200 -0.1066

44060 Spokane WA 0.6494 3.8173 0.8466 0.2893 1.3300 0.3953

44100 Springfield IL 0.2941 14.5944 0.7757 0.3680 -2.6215 -0.1150

44140 Springfield MA 0.9719 48.7269 0.7653 0.2673 -0.0296 0.9868

44180 Springfield MO 0.5980 42.4428 0.7162 0.3118 -0.1019 0.5377

44220 Springfield OH 0.2000 20.6803 0.7124 0.6353 -2.0300 -0.5560

44300 State College PA 0.2059 5.6983 0.8980 0.4912 -0.4000 -0.6733

44700 Stockton CA 0.9552 9.1216 0.8869 0.3999 4.7700 0.4709

44940 Sumter SC 0.1480 5.4151 0.8191 0.6486 0.4500 -1.1196

45060 Syracuse NY 0.9187 11.6878 0.8621 0.2285 -1.0878 0.9094

45220 Tallahassee FL 0.5016 15.0466 0.7887 0.3650 1.8418 0.1910

45300 Tampa-St. Petersburg-Clearwater FL 3.8779 17.9295 0.8662 0.1303 4.0087 1.9781

45460 Terre Haute IN 0.2411 20.4346 0.7766 0.5363 -2.2437 -0.3093

45500 Texarkana TX 0.1911 11.9339 0.7701 0.4806 0.3401 -0.7535

45780 Toledo OH 0.9267 18.0928 0.8282 0.2156 -2.2985 0.9937

45820 Topeka KS 0.3256 22.9574 0.7672 0.3978 -1.2054 -0.0417

45940 Trenton-Ewing NJ 0.5203 1.6191 1.0467 0.3137 -0.8000 -0.1181

46060 Tucson AZ 1.3768 24.1671 0.8204 0.2328 4.0400 1.0965

46140 Tulsa OK 1.2895 5.5205 0.9845 0.1913 0.4138 1.0760

46220 Tuscaloosa AL 0.2922 7.7286 0.8737 0.3964 0.5956 -0.3554

46340 Tyler TX 0.2829 3.5960 0.8892 0.4075 0.7200 -0.5192

46540 Utica-Rome NY 0.4198 76.1905 0.6887 0.3637 -1.6177 0.3300

46660 Valdosta GA 0.1853 33.3007 0.6831 0.4890 0.4906 -0.6906

46700 Vallejo-Fairfield CA 0.5817 2.3184 1.0196 0.5800 5.8800 -0.2641

47020 Victoria TX 0.1620 1.9775 0.9658 0.5431 0.7132 -1.1395

47220 Vineland-Millville-Bridgeton NJ 0.2214 18.9165 0.7773 0.5472 0.3800 -0.6868

47260 Virginia Beach-Norfolk-Newport News VA-NC 2.3615 6.6554 0.9682 0.1646 0.7721 1.5923

47300 Visalia-Porterville CA 0.6001 20.2186 0.8264 0.3309 5.6500 0.1024

47380 Waco TX 0.3248 14.4336 0.7623 0.3399 0.7600 -0.2405

47580 Warner Robins GA 0.1865 2.0361 0.8817 0.5774 -0.0400 -0.9647

47900 Washington-Arlington-Alexandria DC-VA-MD-WV 7.5546 2.1874 1.2875 0.1175 -0.5658 2.6267

47940 Waterloo-Cedar Falls IA 0.2325 4.0817 0.8784 0.3123 -3.6928 -0.3363

48140 Wausau WI 0.1850 8.5505 0.7840 0.4457 -3.3000 -0.5433

48260 Weirton-Steubenville WV-OH 0.1745 12.5561 0.7784 0.6507 -0.4289 -0.8395

48300 Wenatchee WA 0.1526 2.5064 0.9367 0.6415 1.1223 -1.0532

48540 Wheeling WV-OH 0.2071 27.1680 0.7306 0.5045 -0.0508 -0.6087

48620 Wichita KS 0.8491 7.0330 0.8959 0.2070 -0.5189 0.7748

48660 Wichita Falls TX 0.2109 3.6100 0.9231 0.4866 -0.0733 -0.7295

48700 Williamsport PA 0.1663 37.1189 0.7212 0.5359 0.3300 -0.8261

48900 Wilmington NC 0.4833 4.2397 0.9124 0.3689 0.8620 0.0454

49020 Winchester VA-WV 0.1725 8.0065 0.8765 0.8358 0.2643 -0.9449

49180 Winston-Salem NC 0.6594 3.7013 0.9707 0.2738 -0.3283 0.3418

49340 Worcester MA 1.1124 1.7596 1.1348 0.4121 0.2400 0.7079

49420 Yakima WA 0.3318 3.8343 0.9066 0.4012 1.4800 -0.2958

49620 York-Hanover PA 0.5994 20.5103 0.8111 0.4145 -0.5800 0.3817

49660 Youngstown-Warren-Boardman OH-PA 0.8125 37.2035 0.7640 0.2679 -2.2828 0.9348

49700 Yuba City CA 0.2337 1.2193 1.0373 0.9995 3.3821 -1.0057

49740 Yuma AZ 0.2713 45.4247 0.6962 0.3985 4.2400 -0.5236

Notes: See Sections 4 and 5 for computational details on how to obtain the upper bounds, other amenities, and commuting friction parameters.

49



Table 2: Cross-msa distribution of establishment numbers and average size – summary for observed and

simulated data

Mean St.dev. Min Max Correlation

Variable Model Observed Model Observed Model Observed Model Observed Model-Observed

# of establishments total 18067.10 18067.09 16878.09 43138.45 1738 911 109210 541255 0.7253

# of establishments size 1-19 15444.74 15461.97 12066.43 37449.79 1550 804 79181 478618 0.3824

# of establishments size 20-99 2121.56 2162.09 6320.64 4728.28 49 93 52178 51310 0.9412

# of establishments size 100-499 429.83 397.50 1729.44 922.34 14 13 24365 9951 0.8890

# of establishments size 500+ 70.94 45.52 132.67 113.75 2 1 1509 1376 0.9320

Avg establishment size 11.73 15.40 11.63 2.60 0.90 6.40 131.88 23.70 0.1716

Notes: Model values are computed from a representative sample of 6,431,886 establishments. The small difference (of 2 units) with respect the observed

number of establishments in the 2007 County Business Patterns is due to rounding in the sampling procedure. Establishment sizes in the model are

scaled to match the total employment figure for the 356 msas from the 2007 County Business Patterns. The number of observations is N = 356 msas

in all cases.

Table 3: Shipment shares and shipping distances – summary for observed and simulated data

Employment Number of establishments Shipment shares by distance shipped to destination Mean distance shipped

< 100 miles 100–500 miles > 500 miles

Observed Model Observed Model Observed Model Observed Model Observed Model Model (wgt)

All 6,431,884 6,431,886 0.261 0.506 0.288 0.277 0.348 0.217 529.6 71.98 739.8

1–19 5,504,463 5,498,328 0.561 0.984 0.204 0.016 0.194 0.000 327.2 38.5 61.2

20–99 769,705 755,275 0.382 0.835 0.288 0.162 0.276 0.004 423.8 157.9 194.4

100–499 141,510 153,021 0.254 0.420 0.318 0.440 0.342 0.139 520.4 556.0 740.3

500+ 16,206 25,255 0.203 0.079 0.272 0.332 0.388 0.590 588.6 1450.6 1519.1

Notes: Shipping distance and shipping share columns are adapted from calculations by Holmes and Stevens (2010, Table 1) who use confidential Census

microdata from the 1997 Commodity Flow Survey. The small difference (of 2 units) between the observed and model total number of establishments

is due to rounding in our sampling procedure. The last column reports distances shipped weighted by establishments’ sales shares in total sales.

Table 4: Summary of the counterfactuals

Baseline counterfactuals (no agglomeration economies)

No urban frictions (cf1) No trade frictions (cf2)

Mean Std. dev. Weighted mean Mean Std. dev. Weighted mean

% change 1/mr -0.06 0.26 0.04 78.50 14.26 67.59

% change Lr -2.15 3.60 0 4.30 15.28 0

% change Λr -8.79 1.82 -9.85 -43.55 4.27 -39.90

% change Vr 9.69 2.24 10.98 78.17 13.79 67.62

RS coefficient -0.9178 -0.9392

Baseline counterfactuals (short-run, no labor mobility)

No urban frictions (cf1) No trade frictions (cf2)

Mean Std. dev. Weighted mean Mean Std. dev. Weighted mean

% change 1/mr 0.07 0.20 0.01 77.93 14.15 67.10

% change Lr 0 0 0 0 0 0

% change Λr -8.91 1.67 -9.83 -43.45 4.39 -39.68

% change Vr 9.83 2.05 10.93 77.93 14.15 67.10

RS coefficient -0.9249 -0.9249

Robustness checks (with agglomeration economies)

No urban frictions (cf3) No trade frictions (cf4)

Mean Std. dev. Weighted mean Mean Std. dev. Weighted mean

% change 1/mr -0.12 0.31 0.04 78.71 14.03 67.63

% change Lr -2.21 3.74 0 4.50 16.15 0

% change Λr -8.74 1.89 -9.85 -43.60 4.33 -39.90

% change Vr 9.62 2.33 10.98 78.36 14.03 67.66

RS coefficient -0.9176 -0.9394

Notes: Weighted mean refers to the mean percentage change where the weights are given by the

msas’ initial population shares. The counterfactual scenarios cf3 and cf4 include the agglomeration

economies specification developed in Section 6.2. RS coefficient refers to the slope of the estimated

rank-size relationship.
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Figure 1: Distribution of natural Ao
r (top) and unobserved Âu

r ≡ ε̂r (bottom) amenities
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Figure 2: Distribution of technological possibilities µ̂max
r (top) and commuting technology θ̂r (bottom)
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Figure 3: Micro-fit for establishment-level shipments across msas (kernel regressions on distance)

(To be compared with Figures 1–3 in Hillberry and Hummels, 2008)
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