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Abstract

We present the first nationwide index of directly-measured land values by metropolitan area and

investigate their relationship with housing costs. Regulatory and geographic constraints, as well

as construction costs, are shown to increase the cost of housing relative to land. On average,

30 percent of housing costs are due to land, with an increasing fraction in higher-value areas,

implying an elasticity of substitution between land and other inputs of 0.5. Conditional on land

and construction costs, housing productivity is relatively low in larger cities, where productivity

in tradables is high. Areas where regulations lower housing productivity have noticeably higher

quality-of-life.



1 Introduction

Housing occupies the largest share of household expenditure of all consumption goods, and its

value depends fundamentally on the land upon which it is built. Land values are extremely het-

erogenous, reflecting land’s scarcity, its opportunities for development, and the value of the ameni-

ties it provides to households and firms. Although data on housing values is widespread, accurate

data on land values have been notoriously piecemeal. Here, we provide the first inter-metropolitan

index of directly-observed land values for American metropolitan areas, using recent data from

CoStar, a commercial real estate company.

Together with data on housing values, these data allow us to estimate the cost relationship be-

tween housing and land, as well as non-land costs and, perhaps most interestingly, artificial and

natural constraints to development due to regulation and geography. We find that on average, 30

percent of housing costs are due to land, with an increasing fraction in higher-value areas, imply-

ing an elasticity of substitution between land and other inputs into housing production of around

0.5. Consistent estimation of these parameters requires controlling for regulatory and geographic

constraints, which increase the cost of housing significantly relative to land.

This supply-side approach to valuing housing strongly complements the demand-side approach

to studying differences in housing costs, which is based on how housing provides access to local

amenities and labor-market opportunities. It also provides a new measure of local productivity

in the housing sector, determined by the difference between the value of housing predicted by

land and other costs, and its actual value. The housing productivity measure provides the most

important indicator of a city’s productivity in the non-tradeables sector, and can be contrasted

with measures of productivity in the tradeables sector. Contrary to assumptions sometimes in the

literature that the two are the same (e.g. Shapiro 2006 and Rappaport 2007), we find that the two

are negatively related, with productivity in tradeables increasing in city size but productivity in

housing decreasing in city size. Yet, we find that lower housing productivity, including that due to

land-use regulation, is associated with a higher quality of life across cities.

Most measures of land values rely on a residual method that subtracts an estimated value of
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the structure from the observed measure of an entire property’s value, to infer the value of land.

Davis and Palumbo (2007) employ this method rather successfully, albeit “using several formulas,

different sources of data, and a few assumptions about unobserved quantities, none of which is

likely to be exactly right.” Moreover, this method fails to capture how geographic and regulatory

constraints increase the cost of producing housing, attributing such costs to the value of land. From

our analysis this explains why Davis and Palumbo find the average cost-share of land in housing

to have risen to an unprecedented number of almost 50 percent.

Ihlanfeldt (2007) takes direct measures of land values from tax rolls in 25 out of 67 Florida

counties, and finds that land-use regulations are associated with higher housing prices but lower

land values. Rose (1992) acquires data on land values and housing rents across 27 major cities in

Japan for over 35 years, although he does not look at the relationship between housing costs and

land values or regulations. Glaeser et al. (2005b) focus on multifamily buildings in Manhattan to

estimate the costs of housing production, as the marginal cost of building an additional floor does

not entail the use of any additional land, obviating the need for land price data.

The econometric approach used here differs in that we use a cost-function approach to housing,

which uses land as in input. This approach is taken in Epple et al. (2010), who use separately

assessed land and structure values for every house in Alleghany County, Pennsylvania, where they

find a cost of land of 14 percent. Our estimates are based on metropolitan level-indices that

must take into account differences in construction costs and a much wider away of regulatory

differences.1

We estimate the elasticity of substitution between land and other factors of production to be

between 0.32 and 0.5 in our baseline translog estimates, but we cannot formally reject the hypoth-

esis that the elasticity of substitution equals one, or equivalently that the production function is

Cobb-Douglas. Historically, most estimates of the elasticity of substitution have been below one,

for instance see McDonald (1981) for a survey of the older literature. More recent research has

1Although hedonic methods can theoretically provide estimates of land values, these estimates can be highly unre-
liable. For instance, Glaeser and Ward (2009) estimate a value of $16,000 per acre of land in the Greater Boston area
using hedonic methods while presenting evidence that the market price of an acre of land is approximately $300,000
if new housing can be built on it, a discrepancy they attribute to zoning regulations.
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found somewhat higher values: Thorsnes (1997) finds values between 0.81 and 1.08; Epple et al.

(2010) find estimates between 1 and 1.16, and are also unable to reject the null hypothesis of a

Cobb-Douglas production function.

2 Model of Land Values and Housing Production

We base propose a basic cost-function approach to housing, within a system-of-cities model pro-

posed by Roback (1980) and developed by Albouy (2009). The national economy contains many

cities indexed by j, which produce and trade a numeraire traded good, x, and produce housing, y,

which is not traded across cities and has a local price, pj Cities differ in their productivity in the

housing sector Aj
Y .

2.1 Two-Input Model of Housing Production

We begin with a two-factor model in which firms produce housing using land L and materials M

according to the production function

Yj = F Y (L,M ;AY
j ) (1)

where F Y
j is concave and exhibits constant returns to scale (CRS) in L and M . Land is paid a city-

specific price rj , while materials are paid price vj . In our empirical work we will operationalize

M as the installed structure component of housing, so the price vj is conceptualized as total con-

struction costs, possibly an aggregate of local labor and tradeable goods. Unit cost in the housing

sector is cY (rj, vj;A
Y
j ) ≡ minL,M{rjL+ vjM : FY (L,M ;AY

j ) = 1}.

Assuming the housing market is perfectly competitive, then in equilibrium housing prices must

be equal to marginal costs:

cY (rj, vj;A
Y
j ) = pj (2)

This equation can be log-linearized around the national average, to express how housing prices
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should vary with input prices and productivity.

p̂j = φLr̂j + (1− φL)v̂j − ÂY
j (3)

where ẑj represents, for any attribute z, city j’s log deviation from the national average, z̄, i.e.

ẑj = ln zj − ln z ∼= (zj − z)/z, φL is the average cost share of land in housing, and Aj
Y is

normalized so that ĀY = p̄/∂cY (r̄, m̄, ĀY )/∂A. Rearranged, this equation measures unobserved

local home-productivity,

Âj
Y = φLr̂j + (1− φL)v̂j − p̂j (4)

from how high land and material costs are relative to housing costs, p̂j . In other words, cities are

inferred to have low housing productivity if the housing price of houses is high relative to local

input costs.

If we assume that housing productivity is factor neutral, i.e., F Y (L,M ;AY
j ) = AY

j F
Y (L,M ; 1),

then the second-order log-linear approximation of 3 is

p̂j = φLr̂j + (1− φL)v̂j +
1

2
φL(1− φL)(1− σY )(r̂j − v̂j)2 − ÂY

j (5)

where σY is the elasticity of substitution between land and non-land inputs. This elasticity of

substitution is less than one if costs increase in the square of the factor-price difference, (r̂j − v̂j)2.
2 The actual cost share is not constant across cities, but is approximated by

φL
j = φL + φL(1− φL)(1− σY )(r̂j − v̂j)

and thus is increasing when σY < 1.

2On the other hand, if housing productivity is embodied in land, i.e., FY (L,M ;AY
j ) = FY (AY

j L,M ; 1) , then

p̂j = φLr̂j + (1− φL)m̂j +
1

2
φL(1− φL)(1− σY )(r̂j − m̂j − ÂY

j )
2 − φLÂY

j (6)

A symmetric condition would hold if housing productivity is instead embodied in non-land inputs.
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2.2 Empirical Model

We model housing costs empirically using the translog cost function of Christensen et al. (1973):

p̂j = β1r̂j + β2v̂j + β3(r̂j)
2 + β4(v̂j)

2 + β5(r̂j v̂j) + γZj + εj (7)

where Zj is a vector of city attributes that impact housing productivity, such that

Âj
Y = Zj(−γ) + Â0j

Y (8)

and Â0j
Y = −εj is the residual component of housing productivity.3 CRS imply the three restric-

tions

β1 = 1− β2 (9a)

β3 = β4 = −β5/2 (9b)

in which case φL = β1and, with factor-neutral productivity, σY = 1 − 2β3/ [β1(1− β1)]. Cobb-

Douglas production technology, imposes the restriction σY = 1, which in equation (7) amounts to

the three restrictions:

β3 = β4 = β5 = 0 (10)

2.3 Full Determination of Land Values

The full determination of land values requires filling out a model for location demand based on

amenities to individuals, bundled in terms of quality of life, Qj , and to firms and tradeable sector,

bundled as trade productivity, AX
j .

To perform this exercise, we allow there to be two types of individuals, k = X, Y , where

type-Y individuals work in the housing sector. Preferences are modeled by Uk(x, y;Qk
j ), which

3Non-neutral productivity differences would suggest inteacting productivity shifters Zj with input prices r̂j and
m̂j in equation (7). Estimated coefficientes on these estimates were generally not found to be statistically significant
in most specifications.
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is quasi-concave over x and y, and increasing in Qk
j , which summarizes the value of city j’s

amenities to k-types. The expenditure function for an individual is ek(p, u;Q) ≡ minx,y{x + py :

Uk (x, y;Q) ≥ u}. Each individual supplies a single unit of labor and is paid wk
j,, which makes up

a fraction, sw, of total income mk
j , the rest of which is independent of location, and out of which

federal taxes τ(mk
j ) are paid. Assume that individuals are fully mobile and that both types occupy

each city. Then equilibrium requires that individuals everywhere receive the same utility across

all cities, so that higher prices or lower quality-of-life must be compensated with greater after-tax

income:

e(pj, ū;Qj) = mj − τ(mj) (11)

where ūk is the level of utility attained nationally by individuals k. Log-linearizing this condition

around the national average

Q̂k
j = sky p̂j − (1− τ k)swŵ

k
j (12)

where Qk
j is normalized so that Q̄k = 1/∂ek(p̄, ūk, Q̄k)/∂A, sky is the average expenditure share

on housing, and τ k is the average marginal tax rate for type k. Define the aggregate quality-of-life

differential Q̂j ≡ µXQ̂X
j + µY Q̂Y

j , where µX is the share of income earned by workers in the

tradeable sector, and let sy ≡ µXsXy + µY sYy , τ ≡ µXτX + µY τY , and sy ≡ µXŵX
y + µY ŵY

y .

The productivity of firms in the tradeable sector is modeled similarly to the housing sector

except that the price of output is uniform across cities and output is modeled through the CRS and

CD production function, Xj = FX(L,NX , K;AX
j ), where NX is labor and K is mobile capital,

which also has the uniform price, i, everywhere. A derivation similar to that for (3) yields the

following measure of tradeable productivity.

ÂX
j = θLr̂j + θN ŵX

j (13)

where θLand θN are the average cost-share of land and labor in production. Note that land is paid

price the same in both sectors. To complete the model, let non-land inputs be produced through the

CRS and CD function Mj = FM(NY , K), which implies v̂j = $N ŵj , where $N is the cost-share
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of labor. Defining φN = $L(1− φL), then we have

ÂY
j = φLr̂j + φN ŵY

j − p̂j (14)

Combining the productivity in both sectors, define the total productivity differential as

Âj ≡ sxÂ
X
j + syÂ

Y
j (15)

where sx is the average expenditure share on tradeables. Combining equations (12), (13), (14), and

(15) we get that the land-value differential, times the the average income share of land, sR, is equal

to the total productivity differential plus the quality-of-life differential, minus a tax differential to

the government that depends on wages:

sRr̂j = Âj + Q̂j − τswŵj (16)

3 Data

We calculate our land price index from the CoStar COMPS database of commercial real estate

sales, while we calculate house price and wage differentials across cities using data from the 2006-

2008 American Community Survey 3 percent sample. Additionally, we use various indices of

housing market conditions across U.S. cities, including the Wharton Residential Land Use Regula-

tory Index (WRLURI), an index of topographical constraints to residential development calculated

by Saiz (2010), and an index of construction costs across cities published by the Robert Snow

Means company (RS Means index).

The CoStar Group is an industry-leading provider of commercial real estate information. It

claims to have the industry’s largest research organization and estimates that its researchers make

more than 10,000 calls a day to commercial real estate professionals. The CoStar COMPS database

includes transaction details for all types of commercial real estate, including Office, Industrial,
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Retail, and Land. In this study, we take as our initial data set every commercial land sale in the

COMPS database through the second quarter of 2010, which we downloaded during the period

of June 28th through June 30th, 2010 and on September 7th, 2010. After dropping observations

without complete information for lot size, sales price, county, and date, we are left with 31,252.

observations used in our land price estimation.4

Summary statistics for our sample of land sales are shown in Table A2. We observe land sales

in 310 Metropolitan Statistical Areas and Primary Metropolitan Statistical Areas.5 The median

price per acre in our sample was $220,223 while the mean was $933,689; the median lot size was

3.0 acres while the mean was 26.2. We controlled for 12 categories of “proposed use” for each

property in addition to a category for no proposed use. Approximately 19.8% of the properties

sold in our sample had no proposed use listed, while five categories of proposed use, ‘Retail’,

‘Industrial’, ‘Single Family’, ‘Office’, and ‘Hold for Development’, each comprised more than

5% of our sample (a property could have more than one proposed use). As an additional control,

we used the Google Maps automated programming interface to calculate the driving distance and

driving time between each property and the center of the MSA or PMSA (as defined by Google

Maps). 22,350 properties had an address recognized by Google Maps. For these properties, the

mean driving distance from the city center was 37,110 meters (23.1 miles) and the mean driving

time was 1,867 seconds (31.1 minutes). We calculate a land price index for each city by regressing

the log price per acre of each sale on a set of dummy variables for each MSA or PMSA, a set of

dummies for quarter of sale, a set of dummies for planned use, and log lot size. In an alternative

specification, we include log driving distance and log driving time from the city center as controls.

We take the regression coefficient on each MSA or PMSA dummy to be our index of land price

differentials for each city. Some results of the land value regressions, shown in Table A3, are

discussed in the next section.
4The data cleaning also involves dropping 3,155 observations that are not in a metropolitan area, 116 observations

prior to 2005, 5 observations from the third quarter of 2010, and 6 observations with a listed lot size of zero acres
leaves us with 31,327 observations. We also drop 58 observations with a reported price per acre less than $100 and 17
observations with more than 5,000 acres.

5We use the June 30, 1999 definitions provided by the Office of Management and Budget.
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We calculate wage and house price differentials using the 2006-2008 American Community

Survey 3% sample, using a methods detailed in the appendix. The spirit of the exercise is to regress

wages and housing costs on a rich set of observable characteristics, including a set of dummies for

metro area. We then take the coefficients on the metro area dummies as our indices of wages and

housing costs across metro areas.

The Wharton Residential Land Use Regulatory Index (WRLURI), described in Gyourko et al.

(2008), is based on survey responses from municipal planning officials regarding the regulatory

process. The WRLURI is constructed by factor analysis of 11 constituent subindices, which we

also use in our analysis: the approval delay index (ADI), the local political pressure index (LPPI),

the state political involvement index (SPII), the open space index (OSI), the exactions index (EI),

the local project approval index (LPAI), the local assembly index (LAI), the density restrictions

index (DRI), the supply restriction index (SRI), the state court involvement index (SCII), and the

local zoning approval index (LZAI). Thus, two of the subindices concern state level behavior

while nine are local in nature. The local assembly index measures whether zoning requests must

be approved at a town meeting, a feature unique to New England; all other subindices are national

in scope. The components of the WRLURI generally have positive correlations with one another

but this is not always the case; for instance, the SCII is negatively correlated with five of the other

subindices. The WRLURI and subindices are constructed so that a higher score corresponds to an

increase in regulatory stringency.

The index of topographic constraints to residential development is described by Saiz (2010),

who uses satellite imagery to calculate land scarcity in metropolitan areas. The index measures the

fraction of undevelopable land within a 50 km radius of the city center, where land is undevelopable

if it is covered by water or wetlands, or has a slope of 15 degrees or steeper, which effectively

inhibits development.

We re-normalize both the WRLURI and Saiz indices to have mean zero and standard deviation

one, weighted by population in our sample. Therefore, both the WRLURI and the Saiz index

can be interpreted as z-scores in our analysis. Saiz (2010) shows that his index of topographic
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constraints is positively correlated with regulatory constraints as measured by the WRLURI. This

result holds in our sample of metropolitan areas as well: a regression of the WRLURI on the Saiz

index gives a coefficient of 0.302 (s.e. = 0.080).

The RS Means company has published its Building Construction Cost Data for 68 years, and its

multi-city construction cost index is widely used in the literature (e.g. Davis and Palumbo (2007),

Glaeser et al. (2005b)). For each city in the index, RS Means reports construction costs for a

composite of nine common structure types. The index for each city is reported proportionally to

the national average, which is normalized to 100. The index is meant to include the costs of labor,

materials, and equipment rental. It does not include cost variations due to regulatory restrictions,

restrictive union practices, or regional differences in building codes. The RS Means index is based

on cities as defined by three-digit zip code locations, and as such there is not necessarily a one-

to-one correspondence between metropolitan areas and RS Means cities, but in most cases the

correspondence is clear. If an MSA contains more than one RS Means city we use the construction

cost index of the city in the MSA that also has an entry in RS Means. If a PMSA is separately

defined in RS Means we use the cost index for that PMSA; otherwise we use the cost index for the

principal city of the parent CMSA. The RS Means construction cost index includes data for 159 of

the 165 cities we use in our analysis.

Although there are 311 MSAs and PMSAs represented in our database of land sales, we restrict

our analysis to areas for which we observe least 20 land sales, that are identifiable in the ACS, and

that are present in the WRLURI and Saiz index data sets, leaving 165 MSAs and PMSAs, for

which we have 29,602 land sale observations, 7.5 million wage observations, 339,524 of which are

in the construction sector, and 5.5 million housing cost observations. To assist in interpretation of

our results, we re-normalize our housing price, wage, and construction wage differentials, as well

as the RS Means index, to have a population-weighted mean of zero within this sample. Because

these variables are calculated as log deviations from this average, the re-normalized variables can

be interpreted as the percent deviation of the price of each variable in a given city from the national

average.
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In portions of our analysis we use MSA population and weighted population density. For pop-

ulation, we use the 2009 Census estimates. To calculate weighted population density, we calculate

the population density of each census tract in a PUMA to calculate the population-weighted den-

sity at the PUMA level. We then weight by PUMA level population to get the weighted population

density for each MSA or PMSA.

4 Results

The main measures for the analysis are reported in table 1 for a selected number of metropolitan

areas, ranked by land value, and by metropolitan size. The highest land values in the sample are in

San Jose and New York. In general, large coastal cities have the highest land values and housing

costs, while smaller cities in the South and Midwest have lower values. The lowest values are in

Michigan and upstate New York.

Below we present results of the model accounting in sequence for non CD-production, geo-

graphic and regulatory constraints, non-land input costs, and disaggregated measures of regulatory

constraints. We take a brief look at the reverse regression of land values on housing costs and other

variables.

4.1 Simple Model with Constraints

The land-value and housing-cost indices are plotted in figure 1A. A simple linear regression pro-

duces a slope of 0.49, which, assuming all other costs are uniform across cities, is land’s estimated

share of costs. The curvature in the quadratic regression yields an estimate of the elasticity of sub-

stitution of 0.25, which is significantly different from one, the CD case, and implies a wide range

of cost shares across metro areas from 0.24 to 0.82. A visual representation of a city’s housing pro-

ductivity is given by the vertical distance below the regression line: thus, San Francisco (“SF”) has

low housing productivity and Las Vegas (“LAS”) has high housing productivity. The curves here

represent estimates from the data with no controls and will change as other variables are added to
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the model. Figure 1B plots the land-value and housing-cost indices, controlling for distance from

the city center. The estimates using this data yield slightly lower land-cost shares, although the

differences are not significant.

The results in columns 1, 2, and 5 of table 2 reveal that controlling for regulatory and geo-

graphic constraints lowers the estimated cost-share of land to 0.36, and leaves the elasticity of

substitution unchanged. Moreover, a standard deviation increase in either the geographic con-

straint or regulatory index predicts a 7 to 8 percent increase in housing costs. These simple indices

account for substantial variation in housing costs across metro areas. Column 3 presents results

using a housing-cost measure based only on gross rents; the lower estimates suggest that hous-

ing rents are less responsive to differences in land values and constraints. The results in column

4 show the opposite holds true of estimates using housing-cost measures based on the value of

owner-occupied housing alone.6 Because it is not clear that one measure is necessarily more accu-

rate and the share of renters varies substantially across metro areas, we proceed with our original

housing-cost measure, bearing in mind these effects.

4.2 Non-Land Input Cost Differences

Measures of construction costs and of construction wages are plotted against land values in figures

2A and 2B. We see that both measures of non-land input costs are strongly correlated with land

values, implying that accurate estimation must control for these costs.7 The figures also plot esti-

mated zero-profit conditions (ZPCs) for firms, derived from equation 5 estimated without controls,

for fixed values of housing costs and productivity, p̂j + ÂY
j . The slope of the ZPC is the ratio of

land costs to non-land costs, −φL
j /(1 − φL

j ). In the CD case the slope of the ZPC is constant.

With the estimated elasticity, σY , of less than one, the slope of the ZPC increases with land values,

6Figure C plots housing values against housing rents and shows that the two are strongly correlated, although
a one-percent increase in rents predicts a 1.79-percent increase in housing values, or a 1.53-percent increase in the
housing-cost measure. Jointly, a one-percent increase in rents (values) increases the housing-cost index by 0.34-
percent (0.66-percent).

7These measures are strongly correlated, as shown in Appendix Figure A, although there are some considerable
deviations, especially in New York, where costs are high relative to wages, while the opposite is true in Las Vegas.
Construction wage levels are also strongly tied to local wage levels, but not perfectly.
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as the land-cost share is rising with land prices. Firms in cities with higher productivity or higher

housing costs pay their inputs higher prices, and have ZPC’s further to the right. To visualize

the relationship between productivity and housing costs, consider the three-dimensional surface

shown in figure 2C, which predicts housing costs from land values and construction costs using

the estimated cost function. Cities with housing costs above this surface are identified with lower

housing productivity than cities below it.

As seen already in the figures, accounting for non-land costs lowers the implied cost-share

of land. Table 3A presents estimates using the RS Means construction costs. Columns 1 and 2

use the CD specification while columns 3 and 4 use the translog specification; columns 2 and 4

impose the CRS restrictions. Both the CD and CRS restrictions pass at usual statistical sizes. Thus,

the CD formulation in column 2 appears plausible. Yet the point estimate of σY implied by the

estimates in column 4 is appreciably lower than one at 0.5, and is quite consistent with estimates

from the literature. In this specification we find a cost-share of land of 33 percent and a somewhat

smaller impact of the geographic and regulatory constraints, as both are positively correlated with

construction costs.

Results in columns 1 through 4 of table 3B, which uses construction wages, rather than costs,

are quite similar except that they are more prone to reject the CD restriction, with a slightly lower

point estimate for σY of 0.41. The estimates in column 5 imply that a 1-percent increase in con-

struction wages predicts a 0.75 percent increase in construction costs, which appear unrelated to

land costs and geographic constraints, but may be increased slightly by regulation. In column 6,

we report estimates allowing for a third factor, capital, which is unobserved and has constant costs

across areas. We constrain its cost share to be the remainder not accounted for by land or the

fraction of construction costs predicted by constructions costs, approximately 17 percent.

4.3 Disaggregating the Regulatory Index

As discussed above, the WRLURI regulatory index used in the analysis is an aggregation of 11

subindices. The factor loading of each subindex is reported in Table 4, ordered according to the
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size of its load. Alongside, in column 1, are estimates from a regression of the WRLURI z-score

on the z-scores for all of it component subindices. The coefficients vary from the factor loading

coefficients because the sample and weighting are different.

In columns 2 and 3 we report our favored estimates, using the CRS specifications from column

4 of table 3, but with the disaggregated regulatory subindices. The number of subindices relative

to the number of observations lowers the power of this exercise, as does the multiple hypothesis

testing, although they significantly improve the explanatory power of the empirical model. The

results are intriguing as the subindices that appear to increase housing costs the most are typically

not those with the highest factor loading. Here we find exactions, supply restrictions, and political

and court involvement at the state level to be the most strongly related to high housing costs. Two

results that are difficult to explain are that requirements for open space and density restrictions ap-

pear to lower housing costs: these could be the result of true economic processes or of endogenous

regulatory processes that are not modeled. In addition we find that the cost-share of land appears

to be very close to 30 percent and that the elasticity of substitution is between 0.32 and 0.46. These

estimates predict the cost share of land in the sample ranges between 13 and 52 percent.

4.4 Reverse Regression

An alternate way to estimate the parameters of this model is to run the reverse regression of land

values on housing costs and the other regressors. In the CD case

r̂j =
1

φL

p̂j −
1− φL

φL

v̂j +
1

φL

Âj

The results of this regression, shown in table 5, suggest a somewhat larger share of land costs

relative to non-land costs.8

8An explanation of measurment error will soon be here.
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4.5 Productivity in Housing and Tradeables

In table 6 we provide measures of housing productivity using the empirical model in column 3

of table 4, where ÂY
j = Zj(−γ∗) − ε∗j , where the ∗ refers to estimates. Using our indices of

land values, housing costs, and overall wages, and calibrating values for the other parameters in

the model, we also provide estimates for tradeable productivity ÂX
j and overall quality-of-life

Q̂j .9 Productivity in the housing and tradeable sectors are plotted against each other in figure 3,

where they are strongly negatively correlated: on average a 1-percent increase in trade productivity

predicts a 0.84-percent decrease in trade productivity.

This could be the result of increasing returns to scale at the city level in the tradeable sector

being offset by decreasing returns to scale at the city level in the housing sector, as agglomera-

tion economies in tradeables are offset by agglomeration diseconomies in non-tradeables. This

hypothesis is explored in table 7, which examines the relationship of productivity with population

levels (at the Consolidated MSA level) in panel A, or density, in panel B. The negative relation-

ship between housing productivity and either metro population or density in column 2 is large,

significant, and roughly as large as the positive relationships with trade productivity in column 1.

Much of this appears to be the result of endogenous regulatory behavior increasing in larger, denser

cities: taking out the component of housing productivity due to the regulatory subindices in col-

umn 3, the relationship is much weaker. The overall agglomeration economies measured through

total productivity in column 4 are significantly smaller than the economies measured through trade

productivity alone in column 1.

4.6 Housing Productivity and Quality of Life

The analysis above suggests that the overall productivity of larger cities is hampered by regulatory

burdens that lower the welfare of individuals by inflating their housing costs. Yet the close prox-

imity of urban life is thought to create negative externalities, which if left uncontrolled, can lower

9This calibration, explained in Albouy (2009), is sw = 0.75, τ = 0.33, sy = 0.22, sx = 0.64, θL = 0.025, θN =
0.8. A few details still need to be explained.
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the quality of life in cities. This raises the possible utility of regulations, especially with regards to

housing, which can mitigate the impact of these externalities.

Figure 4 shows a striking negative relationship between housing productivity and quality of life

measurements. This relationship must be regarded cautiously, not only because of usual endogene-

ity issues, but because both measures are derived from housing costs. Higher costs signal greater

quality of life and lower productivity, which can induce an unwarranted mechanical relationship

between the two variables. Results in table 8 temper some of these issues by controlling for pos-

sible confounding factors, with column 1 adding variables for natural amenities such as climate

and adjacency to the coast, as well as the geographic constraint index; column 2 adds artificial

amenities such the population level, density, education levels, crime rates and number of eating

and drinking establishments. These natural controls effectively serve to reduce the relationship by

roughly a half, although the artificial controls do little more. To better understand the role of reg-

ulation and to help purge the estimates of their mechanical correlation, columns 3 and 4 use only

the portion of housing productivity predicted by the regulatory subindices. The results using this

measure are actually slightly larger, which lends some credibility to the hypothesis that regulations

in the housing sector improve the welfare of local residents.

A cursory analysis based on equations (15) and (16) suggests that if the elasticity of quality

of life with respect to housing productivity is greater in absolute value than the expenditure share

on housing, then these regulations may actually increase the overall value of land, and could be

welfare improving. In fact the coefficient estimates in table 8 are almost exactly in this range at

about 22 percent.

Other explanations for this phenomenon are easily possible. For instance individuals in nicer

areas may endogenously choose regulations to restrict in-migration. With preference heterogene-

ity, the quality-of-life measure represents the willingness-to-pay of the marginal resident. In cities

with low-housing productivity, the supply of housing is effectively constrained, which can raise

the willingness-to-pay of the marginal resident, much as in the “Superstar City” hypothesis of

Gyourko, Mayer, and Sinai (2006).
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5 Conclusion

The most convincing empirical model from this analysis suggest that the average cost share of land

in metropolitan areas is about 30 percent. Without controls for building costs and geographic and

regulatory constraints, this share may be overestimated. Because substitution possibilities appear

to be limited between land and other factors, with an estimated elasticity around 0.4, this share

ranges from 13 to 52 percent. Since residential housing constitutes roughly 22 percent of gross

household expenditures, these results suggest that income from land constitutes a fairly large por-

tion of national income accounts, with residential land accounting for about 7 percent of income.

Housing productivity varies considerably across metro areas with a standard deviation of 0.16

of total costs, with coastal and larger urban areas having the least efficient housing sectors. Both

geographic and regulatory constraints play a strong role in lowering productivity. Among regula-

tory constraints, exactions, supply restrictions, and state court and political involvement appear to

have the greatest role in raising costs.

Overall, diseconomies in housing productivity appear to offset some of the gains associated

with agglomeration, as measured through productivity in tradeables and seen largely in higher

wage levels. Our estimates suggest that this effect could be diminished if regulations were relaxed

but that doing so could have negative consequences for the quality of life of local residents. Ad-

ditional research is needed to control for the possible endogenous responses of regulation, and to

better determine the causal relationships between the many factors associated with land values and

the overall welfare of the population.
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Appendix

A Wage and House Price Differentials
For the wage regressions, we include all workers who live in an MSA, were employed in the last
year, and reported positive wage and salary income. We calculate hours worked as average weekly
hours times the midpoint of one of six bins for weeks worked in the past year. We then divide wage
and salary income for the year by our calculated hours worked variable to find an hourly wage. We
regress the log hourly wage on a set of MSA dummies and a number of individual covariates,
including:

• survey year dummies;

• age and age squared;

• 12 indicators of educational attainment;

• a quartic in potential experience and potential experience interacted with years of education;

• 9 indicators of industry at the one-digit level (1950 classification);

• 9 indicators of employment at the one-digit level (1950 classification);

• 5 indicators of marital status (married with spouse present, married with spouse absent,
divorced, widowed, separated);

• an indicator for veteran status, and veteran status interacted with age;

• 5 indicators of minority status (Black, Hispanic, Asian, Native American, and other);

• an indicator of immigrant status, years since immigration, and immigrant status interacted
with black, Hispanic, Asian, and other;

• 2 indicators for English proficiency (none or poor).

All covariates are interacted with gender.
This regression is first run using census-person weights. From the regressions a predicted wage

is calculated using individual characteristics alone, controlling for MSA, to form a new weight
equal to the predicted wage times the census-person weight. These new income-adjusted weights
allow us to weight workers by their income share. The new weights are then used in a second
regression, which is used to calculate the city-wage differentials from the MSA indicator variables.
In practice, this weighting procedure has only a small effect on the estimated wage differentials.
All of the wage regressions are at the CMSA level rather than the PMSA level to reflect the ability
of workers to commute relatively easily to jobs throughout a CMSA.

To calculate construction wage differentials, we drop all non-construction workers and follow
the same procedure as above. We define the construction sector as occupation codes 620 through
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676 in the ACS 2000-2007 occupation codes. In our sample, 4.5% of all workers are in the con-
struction sector.

House price differentials are also calculated using the 2006-2008 American Community Survey
3% sample. The differential housing price of an MSA is calculated in a manner similar to the
differential wage, by regressing actual or imputed rent on a set of covariates. We impute a rent of
7.85% annually on the value of owner-occupied housing. The covariates used in the regression for
the adjusted housing cost differential are:

• survey year dummies;

• 9 indicators of building size;

• 9 indicators for the number of rooms, 5 indicators for the number of bedrooms, and number
of rooms interacted with number of bedrooms;

• 3 indicators for lot size;

• 13 indicators for when the building was built;

• 2 indicators for complete plumbing and kitchen facilities;

• an indicator for commercial use;

• an indicator for condominium status (owned units only).

Additionally, in one of our specifications we attempt to control for distance of the housing unit
from the city center. For each 2000 Census PUMA, we calculate population-weighted centroids
aggregated from the census tract level. We then measure the driving distance and driving time from
these centroids to the city center using the Google Maps API. We use the first listed city in each
MSA or PMSA as our destination city, so, for instance, the destination associated with the Vallejo-
Fairfield-Napa, CA PMSA would be Google Maps’ definition of the center of Vallejo, CA. We
successfully calculated driving distances and times for 1,672 of the 1,691 metropolitan PUMAs.

A regression of housing values on housing characteristics and MSA indicator variables is first
run using only owner-occupied units, weighting by census-housing weights. A new value-adjusted
weight is calculated by multiplying the census-housing weights by the predicted value from this
first regression using housing characteristics alone, controlling for MSA. A second regression is
run using these new weights for all units, rented and owner-occupied, on the housing characteristics
fully interacted with tenure, along with the MSA indicators, which are not interacted. The house
price differentials are taken from the MSA indicator variables in this second regression. As with
the wage differentials, this adjusted weighting method has only a small impact on the measured
price differentials. In contrast to the wage regressions, the housing price regressions were run at
the PMSA level rather than the CMSA level to achieve a better geographic match between the
housing stock and the underlying land.
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Name of Area Population

Land 

Value

Housing 

Cost

Wages 

(Const. 

Only)

Regulation 

Index                  

(z-score)

Geo Avail. 

Index          

(z-score)

Const. 

Cost Index

Land 

Value 

Rank

Metropolitan Areas:

San Jose, CA PMSA 1,784,642 119 1.335 0.754 0.234 -0.041 1.604 0.173 1

New York, NY PMSA 9,747,281 388 1.263 0.497 0.151 0.658 0.493 0.302 2

Orange County, CA PMSA 3,026,786 133 1.123 0.705 0.072 0.179 1.066 0.092 3

San Francisco, CA PMSA 1,785,097 80 1.030 0.839 0.234 0.769 2.049 0.228 4

Seattle-Bellevue-Everett, WA PMSA 2,692,066 413 1.006 0.293 0.131 1.020 0.646 0.060 5

Washington, DC-MD-VA-WV PMSA 5,650,154 415 0.733 0.356 0.060 0.291 -0.766 0.003 11

Boston, MA-NH PMSA 3,552,421 357 0.321 0.437 0.161 2.216 0.183 0.174 25

Chicago, IL PMSA 8,710,824 1,344 0.209 0.095 0.234 -0.347 0.474 0.163 37

Phoenix-Mesa, AZ MSA 4,364,094 2,163 0.138 0.029 -0.039 0.633 -0.766 -0.105 38

Philadelphia, PA-NJ PMSA 5,332,822 360 0.046 0.018 0.109 1.320 -0.946 0.157 48

Atlanta, GA MSA 5,315,841 1,739 -0.108 -0.241 -0.133 -0.318 -1.235 -0.104 61

Riverside-San Bernardino, CA PMSA 4,143,113 1,117 -0.196 0.238 0.072 0.456 0.373 0.067 68

Houston, TX PMSA 5,219,317 537 -0.325 -0.378 -0.095 -0.972 -1.029 -0.125 82

Dallas, TX PMSA 4,399,895 438 -0.553 -0.297 -0.122 -0.734 -0.993 -0.145 104

Detroit, MI PMSA 4,373,040 340 -0.741 -0.230 0.088 -0.295 -0.263 0.047 126

Flint, MI PMSA 424,043 61 -1.535 -0.608 0.088 -0.863 -0.973 -0.014 161

Syracuse, NY MSA 725,610 45 -1.544 -0.522 -0.072 -1.288 -0.580 -0.021 162

Peoria-Pekin, IL MSA 357,144 25 -1.611 -0.511 0.164 -0.960 -1.192 0.040 163

Saginaw-Bay City-Midland, MI MSA 390,032 29 -1.825 -0.526 -0.182 -0.386 -0.649 -0.039 164

Rochester, NY MSA 1,093,434 81 -1.859 -0.493 -0.072 -0.458 0.019 0.002 165

Population Categories:

Less than 500,000 18,655,922 2,712 -0.534 -0.214 -0.032 -0.271 -0.083 -0.053 4

500,000 to 1,500,000 54,211,795 7,366 -0.416 -0.193 -0.065 -0.190 -0.180 -0.059 3

1,500,000 to 5,000,000 91,110,643 13,999 0.078 0.041 0.007 0.067 0.091 -0.004 2

5,000,000+ 49,824,250 5,525 0.492 0.201 0.079 0.180 -0.038 0.099 1

United States 29,671 0.684 0.374 0.142 1.001 0.996 0.141

Land-value data from CoStar COMPS database for years 2006 to 2010. Wage and housing-cost data from 2006 to 2008 American Community Survey 3 percent

sample. Wage differentials based on the average logarithm of hourly wages for full-time workers ages 25 to 55. Housing-cost differentials based on the average

logarithm of rents and housing prices. Adjusted differentials are city-fixed effects from individual level regressions on extended sets of worker and housing covariates.

Regulation Index is the Wharton Residential Land Use Regulatory Index (WRLURI) from Gyourko et al. (2008). Geographic Availability Index is the Land

Unavailability Index, constructed by Saiz (2010) at the Primary Metropolitan Statistical Area level. These indices have been turned into z-scores by subtracting the

mean and dividing by the standard deviation. Construction-cost differential from R.S. Means.

TABLE 1: MEASURES FOR SELECTED METROPOLITAN AREAS, RANKED BY LAND-VALUE DIFFERENTIAL

Adjusted Differentials Raw DifferentialsObserved 

No. of 

Land 

Sales

standard deviations (population weighted)total



Specification

Basic Cobb-

Douglas CES Rents Only

Housing 

Prices

Distance 

Adjusted

Dependent Variable Hous. Cost Hous. Cost Hous. Rent Hous. Price Hous. Cost 

(1) (2) (3) (4) (5)

Land-Value Differential 0.363 0.374 0.248 0.454 0.354

(0.028) (0.031) (0.029) (0.027) (0.032)

Land-Value Differential Squared 0.089 0.055 0.139 0.080

(0.032) (0.028) (0.027) (0.029)

Geographic Constraint Index: z-score 0.081 0.069 0.026 0.080 0.078

(0.024) (0.024) (0.016) (0.029) (0.024)

Regulatory Index: z-score 0.075 0.082 0.038 0.094 0.068

(0.014) (0.014) (0.012) (0.017) (0.013)

Constant 0.000 -0.042 -0.026 -0.065 -0.045

(0.021) (0.025) (0.019) (0.029) (0.023)

Number of Observations 165 165 165 165 165

Adjusted R-squared 0.841 0.858 0.773 0.863 0.865

Elasticity of Substitution 1.00 0.242 0.409 -0.121 0.298

(0.254) (0.276) (0.211) (0.228)

TABLE 2: MODEL OF HOUSING-COST DETERMINATION WITH CONSTANT NON-LAND INPUT PRICES

Robust standard errors, clustered by CMSA, reported in parentheses. Data sources as described in Table 1. Columns

(1), (2), and (5) use both renter and owner observations, column (3) uses renters only, and column (4) uses owners

only. Housing-cost and land-value differentials in column (5) distance-adjusted by driving time and distance to MSA

center.



Specification

Basic Cobb-

Douglas

Restricted 

Cobb-

Douglas Translog

Restricted 

Translog

Dependent Variable Hous. Cost Hous. Cost Hous. Cost Hous. Cost 

(1) (2) (3) (4)

Land-Value Differential 0.312 0.312 0.332 0.329

(0.032) (0.033) (0.035) (0.044)

Construction-Cost Differential 0.677 0.688 0.610 0.671

(0.131) (0.033) (0.112) (0.044)

Land-Value Differential Squared 0.044 0.055

(0.029) (0.038)

Construction-Cost Differential Squared -1.598 0.055

(0.980) (0.038)

Land-Value Differential X Construction-Cost 

Differential 0.204 -0.110

(0.319) (0.077)

Geographic Constraint Index: z-score 0.074 0.074 0.065 0.064

(0.022) (0.021) (0.020) (0.023)

Regulatory Index: z-score 0.048 0.047 0.054 0.046

(0.013) (0.011) (0.013) (0.012)

Constant 0.001 0.001 0.001 -0.019

(0.020) (0.020) (0.031) (0.020)

Number of Observations 159 159 159 159

Adjusted R-squared 0.881 0.884 0.888 0.899

p -value for constant-returns-to-scale restrictions 0.941 0.124

p -value for Cobb-Douglas restrictions 0.099 0.149

p- value for all restrictions 0.143

Elasticity of Substitution 1.000 1.000 0.500

(0.315)

TABLE 3A: MODEL OF HOUSING-COST DETERMINATION WITH VARIABLE CONSTRUCTION COSTS

Robust standard errors, clustered by CMSA, reported in parentheses. Data sources as described in Table 1. Factor-

cost restrictions that production function exhibits constant returns to scale. Cobb-Douglas restrictions that squared and

interacted differential coefficients equal zero (elasticity of substitution between factors equals 1).



Specification

Basic Cobb-

Douglas

Restricted 

Cobb-

Douglas 1 Translog

Restricted 

Translog 1

Const. Cost 

Model

Restricted 

Cobb-

Douglas 2

Dependent Variable Hous. Cost Hous. Cost Hous. Cost Hous. Cost Const. Cost Hous. Cost 

(1) (2) (3) (4) (5) (6)

Land-Value Differential 0.305 0.308 0.302 0.323 0.013 0.313

(0.028) (0.028) (0.038) (0.035) (0.025) (0.028)

Construction-Wage Differential 0.711 0.692 0.682 0.677 0.748 0.517

(0.142) (0.028) (0.111) (0.035) (0.057) (0.028)

Implied Capital-Cost Differential -0.016 0.000 0.016 0.000 0.173 0.170

(0.136) (0.111) (0.039)

Land-Value Differential Squared 0.034 0.063

(0.034) (0.034)

Construction-Wage Differential Squared -1.237 0.063

(0.786) (0.034)

Land-Value Differential X Construction-Wage 

Differential 0.410 -0.126

(0.157) (0.068)

Geographic Constraint Index: z-score 0.076 0.075 0.073 0.065 0.006 0.079

(0.017) (0.018) (0.019) (0.020) (0.009) (0.019)

Regulatory Index: z-score 0.056 0.053 0.059 0.055 0.020 0.060

(0.014) (0.013) (0.013) (0.012) (0.010) (0.013)

Constant 0.000 0.000 -0.012 -0.024 -0.001 0.000

(0.019) (0.019) (0.027) (0.022) (0.011) (0.019)

Number of Observations 165 165 165 165 159 165

Adjusted R-squared 0.891 0.826 0.904 0.837 0.755 0.832

p -value for constant-returns-to-scale restrictions 0.906 0.202 0.167

p -value for Cobb-Douglas restrictions 0.018 0.053

p- value for all restrictions 0.024

Elasticity of Substitution 1.000 1.000 0.411 1.000

(0.275)

TABLE 3B: MODEL OF HOUSING-COST DETERMINATION WITH VARIABLE CONSTRUCTION WAGES

Robust standard errors, clustered by CMSA, reported in parentheses. Data sources as described in Table 1. Factor-cost restrictions that

production function exhibits constant returns to scale. Cobb-Douglas restrictions that squared and interacted differential coefficients equal

zero (elasticity of substitution between factors equals one).



Specification

Factor 

Loading

Restricted 

Translog w 

Cons Cost

Restricted 

Translog w 

Wage Cost

Dependent Variable Reg Index Hous. Cost Hous. Cost 

(1) (2) (3)

Land-Value Differential 0.292 0.295

(0.240) (0.025)

Land-Value Differential Squared 0.056 0.071

(0.019) (0.021)

Geographic Constraint Index: z-score 0.048 0.055

(0.016) (0.014)

Approval Delay: z-score 0.29 0.509 0.033 0.024

(0.036) (0.040) (0.032)

Local Political Pressure: z-score 0.22 0.186 0.017 0.019

(0.061) (0.023) (0.024)

State Political Involvement: z-score 0.22 0.388 0.056 0.047

(0.022) (0.021) (0.021)

Open Space: z-score 0.18 -0.027 -0.030 -0.035

(0.033) (0.012) (0.014)

Exactions: z-score 0.15 -0.054 0.079 0.100

(0.070) (0.040) (0.048)

Local Project Approval: z-score 0.15 0.212 -0.015 0.004

(0.019) (0.011) (0.011)

Local Assembly: z-score 0.14 0.138 0.001 -0.009

(0.046) (0.018) (0.019)

Density Restrictions: z-score 0.09 0.121 -0.076 -0.101

(0.077) (0.036) (0.038)

Supply Restrictions: z-score 0.02 0.145 0.045 0.045

(0.031) (0.011) (0.012)

State Court Involvement: z-score -0.03 -0.140 0.057 0.041

(0.020) (0.012) (0.012)

Local Zoning Approval: z-score -0.04 -0.089 -0.008 0.016

(0.069) (0.039) (0.036)

Constant 0.000 -0.020 -0.027

(0.019) (0.014) (0.015)

Number of Observations 165 159 165

Adjusted R-squared 0.946 0.865 0.87

Elasticity of Substitution 0.462 0.319

(0.169) (0.190)

TABLE 4: MODEL OF HOUSING COSTS WITH DISAGGREGATED REGULATORY INDICES

Robust standard errors, clustered by CMSA, reported in parentheses. Data sources as described in

Table 1; constituent components of Wharton Residential Land Use Regulatory Index (WRLURI)

from Gyourko et al (2008).



Specification

Cobb-

Douglas 

Land Only

Cobb-

Douglas 

Const Cost

Housing-Cost Measure Average Average

(1) (2)

Land-Value Differential 1.656 2.011

(0.128) (0.167)

Construction-Cost Differential -0.954  

(0.269)  

Geographic Constraint Index: z-score -0.012 -0.009  

(0.040) (0.034)  

Regulatory Index: z-score -0.017 All

(0.035) Subindices

Constant 0.000 -0.002  

(0.034) (0.028)  

Number of Observations 165 159  

Adjusted R-squared 0.781 0.803  

Implied Land-Cost Share 0.604 0.497  

(0.047) (0.041)  

Implied Material-Cost Share 0.474

(0.114)

TABLE 5: REVERSE REGRESSION OF LAND VALUES ON HOUSING COSTS

Robust standard errors, clustered by CMSA, reported in parentheses. Data sources

as described in Table 1; constituent components of Wharton Residential Land Use

Regulatory Index (WRLURI) from Gyourko et al (2008).



Name

Housing 

(Including 

Indices)

Unexplained 

Housing 

Component Tradeables

Quality of 

Life

Total 

Amenity 

Value

Metropolitan Areas:

San Jose, CA PMSA -0.136 -0.004 0.202 0.124 0.224

New York, NY PMSA 0.042 0.081 0.153 0.076 0.183

Orange County, CA PMSA -0.272 -0.134 0.100 0.160 0.167

San Francisco, CA PMSA -0.352 -0.082 0.194 0.148 0.197

Seattle-Bellevue-Everett, WA PMSA 0.123 0.270 0.063 0.063 0.129

Washington, DC-MD-VA-WV PMSA -0.093 -0.097 0.123 0.045 0.104

Boston, MA-NH PMSA -0.254 0.018 0.079 0.086 0.082

Chicago, IL PMSA 0.104 0.052 0.048 0.004 0.057

Phoenix-Mesa, AZ MSA -0.041 0.019 -0.003 0.012 0.001

Philadelphia, PA-NJ PMSA 0.045 0.029 0.050 -0.020 0.021

Atlanta, GA MSA 0.088 0.018 -0.011 -0.063 -0.052

Riverside-San Bernardino, CA PMSA -0.268 -0.155 0.067 0.029 0.016

Houston, TX PMSA 0.192 0.021 -0.002 -0.109 -0.070

Dallas, TX PMSA 0.034 -0.102 -0.023 -0.079 -0.086

Detroit, MI PMSA 0.095 0.111 -0.021 -0.064 -0.056

Flint, MI PMSA 0.377 0.270 -0.040 -0.170 -0.116

Syracuse, NY MSA 0.142 -0.017 -0.141 -0.093 -0.153

Peoria-Pekin, IL MSA 0.348 0.190 -0.106 -0.109 -0.103

Saginaw-Bay City-Midland, MI MSA 0.023 -0.021 -0.168 -0.084 -0.187

Rochester, NY MSA 0.092 -0.073 -0.139 -0.090 -0.160

Population Categories:

Less than 500,000 0.049 0.020 -0.070 -0.031 -0.065

500,000 to 1,500,000 0.029 -0.011 -0.060 -0.029 -0.061

1,500,000 to 5,000,000 -0.021 0.002 0.010 0.007 0.009

5,000,000+ 0.002 0.007 0.075 0.024 0.072

United States 0.162 0.104 0.097 0.072 0.101

TABLE 6: INFERRED ATTRIBUTES OF SELECTED METROPOLITAN AREAS, RANKED BY 

TOTAL AMENITY VALUE

Productivity

standard deviations (population weighted)

Land-value data from CoStar COMPS database for years 2006 to 2010. Wage and housing-cost data from

2006 to 2008 American Community Survey 3 percent sample. Wage differentials based on the average

logarithm of hourly wages for full-time workers ages 25 to 55. Housing-cost differentials based on the

average logarithm of rents and housing prices. Adjusted differentials are city-fixed effects from individual

level regressions on extended sets of worker and housing covariates. Regulation Index is the Wharton

Residential Land Use Regulatory Index (WRLURI) from Gyourko et al. (2008). Geographic Availability

Index is the Land Unavailability Index, constructed by Saiz (2010) at the Primary Metropolitan Statistical

Area level. These indices have been turned into z-scores by subtracting the mean and dividing by the

standard deviation. Construction-cost differential from R.S. Means. Quality of life, federal tax, and inferred

land values from Albouy (2009). Distance-adjusted land rent controls for driving time and distance to MSA

center according to Google Maps.



Tradeables 

Productivity

Housing 

Productivity

Homog Reg. 

Hous. Prod.

Total 

Productivity

(1) (2) (3) (4)

Panel A: Population

Log of Population 0.039 -0.063 -0.040 0.012

(0.009) (0.029) (0.017) (0.006)

Number of Observations 165 165 165 165

Adjusted R-squared 0.168 0.156 0.119 0.05

Panel B: Population Density

Weighted Density Differential 0.088 -0.065 -0.020 0.042

(0.012) (0.037) (0.019) (0.004)

Number of Observations 165 165 165 165

Adjusted R-squared 0.529 0.1 0.013 0.442

TABLE 7: PRODUCTIVITY IN TRADEABLE AND HOSUING SECTORS ACCORDING TO 

METROPOLITAN POPULATION

Dependent Variable

Robust standard errors, clustered by CMSA, reported in parentheses. Data sources as described in

Table 1.. Tradeables productivity is 0.825 times the wage differential plus 0.025 times the land

value differential. Housing productivity is inferred from column (5) of Table 4 taking into account

the effect of geographic and regulatory variables. The measure in column (3) excludes the effect of

regulatory variables. Total productivity is 0.64 tradeables productivity plus 0.212 times housing

productivity.



(1) (2) (3) (4)

Panel A: Population

Housing Productivity -0.190 -0.182 -0.260 -0.217

(0.037) (0.028) (0.037) (0.030)

Natural Controls X X X X

Artificial Controls X X

Number of Observations 159 159 159 159

Adjusted R-squared 0.81 0.88 0.80 0.87

TABLE 8: QUALITY OF LIFE AND HOUSING PRODUCTIVITY

Dependent Variable: Quality of Life

Robust standard errors, clustered by CMSA, in parentheses. Sample contains 159 observations.

Housing Productivity predicted by regulation based upon the projection of housing costs on the

subindices in column 3 of table 4. Natural controls: heating and cooling degree days, July

humidity, annual sunshine, annual precipitation, adjacency to coast, geographic constraint index.

Artificial controls include metropolitan population, density, eating and drinking establishments,

violent crime rate, and fractions with a college degree, some college, and high-school degree.

Total Housing Productivity

Housing Productivity 

Predicted by Regulation



Full Name Population

Cen-

sus 

Div-

ision

Obs. 

Land 

Sales

Land 

Value

Land 

Value 

(Dist. 

Adj.)

Housing 

Cost

Hous. 

Cost 

(Dist. 

Adj.)

Wages 

(All)

Wages 

(Const. 

Only)

Reg. 

Index          

(z-score)

Geo 

Avail. 

Index          

(z-score)

Const. 

Cost 

Index Housing

Tradea-

bles

Land 

Value 

Rank

Metropolitan Areas:

San Jose, CA PMSA 1,784,642 9 119 1.335 1.121 0.754 0.736 0.204 0.234 -0.041 1.604 0.173 -0.136 0.202 1

New York, NY PMSA 9,747,281 2 388 1.263 1.351 0.497 0.509 0.147 0.151 0.658 0.493 0.302 0.042 0.153 2

Orange County, CA PMSA 3,026,786 9 133 1.123 0.977 0.705 0.698 0.087 0.072 0.179 1.066 0.092 -0.272 0.100 3

San Francisco, CA PMSA 1,785,097 9 80 1.030 0.930 0.839 0.826 0.204 0.234 0.769 2.049 0.228 -0.352 0.194 4

Seattle-Bellevue-Everett, WA PMSA 2,692,066 9 413 1.006 0.880 0.293 0.289 0.045 0.131 1.020 0.646 0.060 0.123 0.063 5

Bergen-Passaic, NJ PMSA 1,387,028 2 62 0.892 1.159 0.519 0.510 0.147 0.151 0.681 0.493 0.113 -0.137 0.144 6

Naples, FL MSA 318,537 5 55 0.879 0.715 0.347 0.362 0.024 -0.012 0.085 2.166 -0.068 0.042 7

Los Angeles-Long Beach, CA PMSA 9,848,011 9 742 0.841 0.898 0.557 0.552 0.087 0.072 0.373 1.066 0.092 -0.244 0.093 8

Miami, FL PMSA 2,500,625 5 398 0.812 0.726 0.252 0.249 -0.049 -0.148 1.113 2.215 -0.080 -0.079 -0.020 9

Oakland, CA PMSA 2,532,756 9 169 0.781 0.859 0.619 0.614 0.204 0.234 0.603 1.503 0.165 -0.230 0.188 10

Washington, DC-MD-VA-WV PMSA 5,650,154 5 415 0.733 0.915 0.356 0.373 0.127 0.060 0.291 -0.766 0.003 -0.093 0.123 11

Nassau-Suffolk, NY PMSA 2,875,904 2 180 0.701 1.157 0.544 0.586 0.147 0.151 0.737 0.493 0.302 -0.237 0.139 12

Middlesex-Somerset-Hunterdon, NJ PMSA 1,247,641 2 120 0.692 0.975 0.387 0.388 0.147 0.151 1.393 0.493 0.112 -0.083 0.139 13

Fort Lauderdale, FL PMSA 1,766,476 5 171 0.681 0.686 0.255 0.253 -0.049 -0.148 0.762 2.171 -0.105 -0.138 -0.024 14

Jersey City, NJ PMSA 597,924 2 69 0.677 0.318 0.362 0.366 0.147 0.151 0.084 0.178 0.113 -0.063 0.139 15

Santa Barbara-Santa Maria-Lompoc, CA MSA 407,057 9 28 0.676 0.684 0.563 0.583 0.043 0.089 1.000 2.661 0.069 -0.304 0.052 16

Ventura, CA PMSA 802,983 9 48 0.670 0.989 0.616 0.612 0.087 0.072 1.523 2.358 0.074 -0.369 0.089 16

West Palm BeachBoca Raton, FL MSA 1,279,950 5 191 0.629 0.772 0.215 0.214 0.000 -0.086 0.078 1.615 -0.131 -0.081 0.016 18

Las Vegas, NV-AZ MSA 2,141,893 8 893 0.579 0.423 0.089 0.074 0.065 0.190 -1.453 0.096 -0.115 0.199 0.068 19

San Luis Obispo-Atascadero-Paso Robles, CA MSA 266,971 9 27 0.524 0.539 0.520 0.513 0.002 0.140 1.380 1.701 0.033 -0.284 0.014 20

San Diego, CA MSA 3,053,793 9 395 0.493 0.411 0.532 0.530 0.070 0.095 0.262 1.586 0.060 -0.336 0.070 21

Tacoma, WA PMSA 796,836 9 119 0.419 0.559 0.026 0.029 0.045 0.131 1.852 0.316 0.037 0.169 0.048 22

Vallejo-Fairfield-Napa, CA PMSA 541,884 9 59 0.397 0.415 0.440 0.494 0.204 0.234 1.144 0.908 0.115 -0.184 0.178 23

Newark, NJ PMSA 2,045,344 2 146 0.347 0.549 0.380 0.376 0.147 0.151 0.695 0.022 0.126 -0.196 0.130 24

Boston, MA-NH PMSA 3,552,421 1 357 0.321 0.453 0.437 0.445 0.086 0.161 2.216 0.183 0.174 -0.254 0.079 25

Santa Rosa, CA PMSA 472,102 9 71 0.318 0.123 0.569 0.552 0.204 0.234 1.708 1.567 0.127 -0.337 0.176 26

Orlando, FL MSA 2,082,421 5 528 0.306 0.212 -0.021 -0.025 -0.079 -0.149 0.128 0.289 -0.097 -0.007 -0.057 27

Sarasota-Bradenton, FL MSA 688,126 5 189 0.273 0.201 0.119 0.114 -0.100 -0.152 1.077 1.739 -0.100 -0.160 -0.076 28

Monmouth-Ocean, NJ PMSA 1,217,783 2 113 0.272 0.777 0.329 0.338 0.147 0.151 2.115 0.493 0.302 -0.169 0.128 29

Portland-Vancouver, OR-WA PMSA 2,230,947 9 283 0.264 0.115 0.073 0.073 -0.053 -0.005 0.051 0.356 0.007 -0.022 -0.037 30

Provo-Orem, UT MSA 545,307 8 38 0.261 0.441 -0.263 -0.258 -0.166 -0.143 -0.041 1.404 -0.145 0.224 -0.131 30

Reading, PA MSA 407,125 2 27 0.258 0.155 -0.328 -0.324 -0.078 0.026 0.496 -0.645 0.010 0.398 -0.058 32

Trenton, NJ PMSA 366,222 2 45 0.243 0.795 0.237 0.213 0.147 0.151 2.382 -0.868 0.108 -0.085 0.128 33

Baltimore, MD PMSA 2,690,886 5 232 0.243 0.205 0.129 0.130 0.127 0.060 2.124 -0.389 -0.066 -0.040 0.111 34

Tampa-St. Petersburg-Clearwater, FL MSA 2,747,272 5 539 0.240 0.230 -0.059 -0.055 -0.093 -0.167 -0.712 0.551 -0.066 -0.003 -0.071 35

Olympia, WA PMSA 250,979 9 107 0.234 -0.043 0.001 -0.003 0.045 0.131 0.532 0.401 0.026 0.134 0.043 36

Chicago, IL PMSA 8,710,824 3 1,344 0.209 0.300 0.095 0.105 0.052 0.234 -0.347 0.474 0.163 0.104 0.048 37

Phoenix-Mesa, AZ MSA 4,364,094 8 2,163 0.138 0.246 0.029 0.022 -0.008 -0.039 0.633 -0.766 -0.105 -0.041 -0.003 38

Stockton-Lodi, CA MSA 674,860 9 96 0.130 -0.034 0.207 0.200 0.072 0.193 0.556 -0.856 0.073 -0.060 0.063 39

Reno, NV MSA 414,820 8 59 0.121 -0.130 0.163 0.148 -0.007 0.125 -0.848 1.235 -0.028 -0.066 -0.003 40

Newburgh, NY-PA PMSA 444,061 2 38 0.116 0.474 0.181 0.180 0.147 0.151 -0.441 -0.004 0.157 -0.068 0.125 41

Denver, CO PMSA 2,445,781 8 690 0.111 0.032 -0.077 -0.076 -0.020 -0.096 0.974 -0.634 -0.044 0.018 -0.014 42

Atlantic-Cape May, NJ PMSA 367,803 2 37 0.102 0.333 0.123 0.125 0.059 0.109 0.711 1.670 0.097 -0.043 0.051 43

Jacksonville, FL MSA 1,301,808 5 405 0.074 0.079 -0.165 -0.166 -0.063 -0.116 -0.403 0.821 -0.159 0.081 -0.050 44

Fort Myers-Cape Coral, FL MSA 586,908 5 258 0.070 -0.051 0.024 0.019 -0.062 0.002 -0.602 1.098 -0.124 -0.029 -0.050 45

Kenosha, WI PMSA 165,382 3 37 0.052 0.385 -0.171 -0.164 0.052 0.234 0.967 0.849 0.006 0.327 0.044 46

Adjusted Differentials Raw Differentials Productivity

TABLE A1 (PROVISIONAL): LIST OF METROPOLITAN AREAS BY LAND PRICE DIFFERENTIAL, 2006-2008
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TABLE A1 (PROVISIONAL): LIST OF METROPOLITAN AREAS BY LAND PRICE DIFFERENTIAL, 2006-2008

Bridgeport, CT PMSA 470,094 1 94 0.047 0.042 0.414 0.379 0.147 0.151 0.381 0.493 0.101 -0.320 0.123 47

Philadelphia, PA-NJ PMSA 5,332,822 2 360 0.046 0.176 0.018 0.027 0.059 0.109 1.320 -0.946 0.157 0.045 0.050 48

Boulder-Longmont, CO PMSA 311,786 8 75 0.039 -0.076 0.111 0.114 -0.020 -0.096 3.706 0.623 -0.094 -0.193 -0.016 49

Salt Lake City-Ogden, UT MSA 1,567,650 8 91 0.034 0.052 -0.240 -0.240 -0.105 -0.096 -0.416 1.994 -0.130 0.156 -0.086 50

Melbourne-Titusville-Palm Bay, FL MSA 536,357 5 131 0.015 0.405 -0.105 -0.107 -0.114 -0.117 0.446 1.626 -0.079 0.001 -0.094 51

Wilmington-Newark, DE-MD PMSA 635,430 5 45 0.006 0.210 -0.015 -0.016 0.059 0.109 0.366 -0.731 0.053 0.067 0.049 52

Allentown-Bethlehem-Easton, PA MSA 706,374 2 52 -0.006 -0.299 -0.174 -0.170 -0.054 0.059 -0.337 -0.437 0.050 0.187 -0.045 53

Raleigh-Durham-Chapel Hill, NC MSA 1,589,388 5 551 -0.013 -0.064 -0.224 -0.221 -0.052 -0.177 0.417 -1.043 -0.236 0.070 -0.043 54

Albuquerque, NM MSA 841,428 8 97 -0.029 -0.097 -0.248 -0.255 -0.106 -0.118 0.217 -0.876 -0.104 0.129 -0.088 55

Savannah, GA MSA 343,092 5 61 -0.038 -0.153 -0.206 -0.212 -0.097 -0.096 -1.190 1.429 -0.183 0.099 -0.081 56

Colorado Springs, CO MSA 604,542 8 219 -0.039 -0.149 -0.234 -0.233 -0.130 -0.179 0.993 -0.370 -0.075 0.070 -0.109 57

Minneapolis-St. Paul, MN-WI MSA 3,269,814 4 383 -0.049 -0.086 -0.048 -0.049 0.030 0.109 -0.098 -0.515 0.124 0.085 0.024 58

Fort Pierce-Port St. Lucie, FL MSA 406,296 5 26 -0.064 -0.043 -0.030 -0.031 -0.081 -0.094 0.331 1.658 -0.082 -0.068 59

Norfolk-Virginia Beach-Newport News, VA-NC MSA 1,667,410 5 151 -0.090 -0.035 -0.049 -0.046 -0.083 -0.080 -0.180 1.413 -0.122 -0.061 -0.071 60

Atlanta, GA MSA 5,315,841 5 1,739 -0.108 -0.042 -0.241 -0.232 -0.010 -0.133 -0.318 -1.235 -0.104 0.088 -0.011 61

Tucson, AZ MSA 1,020,200 8 527 -0.116 -0.145 -0.109 -0.095 -0.118 -0.217 2.011 -0.332 -0.139 -0.105 -0.100 62

Fort Collins-Loveland, CO MSA 298,382 8 124 -0.130 -0.257 -0.144 -0.167 -0.117 -0.084 0.924 0.057 -0.090 0.019 -0.100 63

Lakeland-Winter Haven, FL MSA 583,403 5 212 -0.154 -0.145 -0.233 -0.239 -0.136 -0.173 -0.091 0.101 -0.075 0.038 -0.116 64

Modesto, CA MSA 510,385 9 60 -0.164 -0.084 0.121 0.111 0.038 0.127 0.019 -0.750 0.074 -0.101 0.027 65

Visalia-Tulare-Porterville, CA MSA 429,668 9 25 -0.186 -0.232 -0.136 -0.142 -0.031 0.007 0.350 -0.505 0.061 -0.030 66

Merced, CA MSA 245,321 9 49 -0.190 -0.064 -0.032 -0.024 -0.008 0.023 0.632 -0.946 -0.032 -0.011 67

Riverside-San Bernardino, CA PMSA 4,143,113 9 1,117 -0.196 -0.048 0.238 0.241 0.087 0.072 0.456 0.373 0.067 -0.268 0.067 68

Nashville, TN MSA 1,495,419 6 370 -0.199 -0.360 -0.291 -0.299 -0.071 -0.126 -1.005 -0.819 -0.123 0.116 -0.063 68

Madison, WI MSA 491,357 3 124 -0.206 0.366 -0.100 -0.108 -0.089 0.049 0.266 -0.890 -0.007 0.051 -0.078 70

Asheville, NC MSA 251,894 5 30 -0.222 -0.589 -0.169 -0.201 -0.212 -0.334 -1.326 1.780 -0.269 -0.158 -0.180 71

Charlotte-Gastonia-Rock Hill, NC-SC MSA 1,937,309 5 732 -0.237 -0.347 -0.311 -0.302 -0.065 -0.186 -0.854 -1.206 -0.237 0.083 -0.060 72

Greeley, CO PMSA 254,759 8 121 -0.251 -0.289 -0.289 -0.278 -0.020 -0.096 -0.465 -0.949 -0.158 0.122 -0.023 73

Fresno, CA MSA 1,063,899 9 185 -0.252 -0.493 0.001 -0.007 -0.020 -0.004 1.055 -0.817 0.076 -0.101 -0.023 74

Richmond-Petersburg, VA MSA 1,119,459 5 165 -0.271 -0.291 -0.169 -0.173 -0.026 -0.105 -0.961 -1.010 -0.128 -0.011 -0.029 75

Providence-Fall River-Warwick, RI-MA MSA 1,201,855 1 35 -0.283 -0.391 0.109 0.106 -0.007 0.065 2.667 0.493 0.071 -0.165 -0.013 76

Boise City, ID MSA 571,271 8 81 -0.283 -0.391 -0.266 -0.284 -0.143 -0.202 -1.094 0.299 -0.116 0.013 -0.125 77

Austin-San Marcos, TX MSA 1,705,075 7 187 -0.293 -0.414 -0.222 -0.223 -0.058 -0.107 -0.813 -1.250 -0.213 0.035 -0.055 78

Lancaster, PA MSA 507,766 2 49 -0.304 -0.417 -0.251 -0.254 -0.099 -0.039 0.085 -0.863 -0.066 0.112 -0.089 79

Daytona Beach, FL MSA 587,512 5 77 -0.307 -0.370 -0.118 -0.120 -0.156 -0.137 0.382 -1.379 -0.112 -0.094 -0.136 80

New Orleans, LA MSA 1,211,035 7 33 -0.323 -0.544 -0.205 -0.220 -0.088 -0.102 -2.311 2.132 -0.115 0.014 -0.081 81

Houston, TX PMSA 5,219,317 7 537 -0.325 -0.355 -0.378 -0.377 0.007 -0.095 -0.972 -1.029 -0.125 0.192 -0.002 82

Charleston-North Charleston, SC MSA 659,191 5 155 -0.337 -0.421 -0.095 -0.104 -0.109 -0.162 -1.632 1.445 -0.193 -0.144 -0.099 83

Indianapolis, IN MSA 1,823,690 3 165 -0.344 -0.445 -0.442 -0.434 -0.078 -0.068 -1.441 -1.360 -0.064 0.271 -0.073 84

York, PA MSA 428,937 2 31 -0.349 -0.576 -0.313 -0.315 -0.068 0.032 0.997 -0.853 -0.026 0.215 -0.065 85

Milwaukee-Waukesha, WI PMSA 1,559,667 3 185 -0.357 -0.438 -0.117 -0.114 -0.043 0.084 0.348 0.558 0.046 0.057 -0.044 86

Fayetteville-Springdale-Rogers, AR MSA 425,685 7 48 -0.364 -0.530 -0.350 -0.350 -0.151 -0.238 -1.002 -0.053 -0.277 0.048 -0.134 87

Champaign-Urbana, IL MSA 195,671 3 20 -0.371 -0.818 -0.387 -0.427 -0.157 0.004 -0.982 -1.360 0.041 0.263 -0.139 88

Lexington, KY MSA 554,107 6 20 -0.401 -0.314 -0.365 -0.390 -0.138 -0.175 -0.075 -1.148 -0.124 0.099 -0.124 89

Cincinnati, OH-KY-IN PMSA 1,776,911 3 234 -0.402 -0.465 -0.318 -0.319 -0.049 -0.057 -1.319 -0.939 -0.078 0.140 -0.051 90

Billings, MT MSA 144,797 8 20 -0.407 -0.642 -0.414 -0.415 -0.197 -0.148 -0.672 -0.889 -0.099 0.167 -0.173 91

Columbus, OH MSA 1,718,303 3 268 -0.408 -0.541 -0.318 -0.318 -0.055 -0.118 0.039 -1.310 -0.050 0.093 -0.055 92

Harrisburg-Lebanon-Carlisle, PA MSA 667,425 2 56 -0.410 -0.501 -0.344 -0.342 -0.083 -0.012 0.430 -0.287 -0.016 0.198 -0.078 92

St. Louis, MO-IL MSA 2,733,694 4 296 -0.480 -0.371 -0.317 -0.306 -0.050 0.096 -1.400 -0.902 0.039 0.239 -0.053 94



Full Name Population

Cen-

sus 

Div-

ision

Obs. 

Land 

Sales

Land 

Value

Land 

Value 

(Dist. 

Adj.)

Housing 

Cost

Hous. 

Cost 

(Dist. 

Adj.)

Wages 

(All)

Wages 

(Const. 

Only)

Reg. 

Index          

(z-score)

Geo 

Avail. 

Index          

(z-score)

Const. 

Cost 

Index Housing

Tradea-

bles

Land 

Value 

Rank

Adjusted Differentials Raw Differentials Productivity

TABLE A1 (PROVISIONAL): LIST OF METROPOLITAN AREAS BY LAND PRICE DIFFERENTIAL, 2006-2008

McAllen-Edinburg-Mission, TX MSA 741,152 7 91 -0.501 -0.552 -0.804 -0.809 -0.248 -0.342 -1.072 -1.384 -0.266 0.390 -0.217 95

Louisville, KY-IN MSA 1,099,588 6 88 -0.506 -0.756 -0.417 -0.426 -0.119 -0.105 -1.098 -0.825 -0.084 0.178 -0.111 96

Rockford, IL MSA 409,058 3 63 -0.515 -0.218 -0.482 -0.481 -0.084 0.136 -1.199 -1.325 0.098 0.428 -0.082 97

Gary, IN PMSA 657,809 3 90 -0.518 -0.364 -0.368 -0.368 0.052 0.234 -1.457 0.070 0.030 0.393 0.030 98

Cleveland-Lorain-Elyria, OH PMSA 2,192,053 3 139 -0.522 -0.544 -0.345 -0.340 -0.087 -0.025 -0.614 0.497 0.005 0.163 -0.085 99

Green Bay, WI MSA 247,319 3 38 -0.528 -0.701 -0.345 -0.348 -0.099 -0.081 0.531 -0.322 -0.034 0.118 -0.095 100

Greensboro-Winston-Salem-High Point, NC MSA 1,416,374 5 316 -0.536 -0.564 -0.421 -0.424 -0.130 -0.243 -0.954 -1.280 -0.245 0.070 -0.121 101

Dutchess County, NY PMSA 293,562 2 25 -0.540 -0.739 0.223 0.192 0.147 0.151 0.189 0.493 0.157 -0.269 0.108 102

Lincoln, NE MSA 281,531 4 20 -0.542 -0.578 -0.479 -0.482 -0.228 -0.132 0.825 -1.353 -0.121 0.211 -0.201 103

Dallas, TX PMSA 4,399,895 7 438 -0.553 -0.540 -0.297 -0.296 -0.011 -0.122 -0.734 -0.993 -0.145 0.034 -0.023 104

Worcester, MA-CT PMSA 547,274 1 40 -0.557 -0.517 0.115 0.112 0.086 0.161 3.115 0.183 0.106 -0.156 0.057 105

Tulsa, OK MSA 873,304 7 205 -0.563 -0.723 -0.459 -0.472 -0.146 -0.248 -1.537 -1.130 -0.223 0.098 -0.135 106

Brazoria, TX PMSA 309,208 7 45 -0.571 -0.551 -0.453 -0.431 0.007 -0.095 -1.181 -1.029 -0.125 0.206 -0.008 106

Bakersfield, CA MSA 807,407 9 50 -0.580 -0.806 -0.056 -0.057 0.023 0.056 0.252 -0.278 0.060 -0.074 0.004 108

Myrtle Beach, SC MSA 263,868 5 50 -0.598 -0.663 -0.228 -0.226 -0.174 -0.222 -1.671 1.512 -0.122 -0.158 109

Memphis, TN-AR-MS MSA 1,230,253 6 144 -0.611 -0.661 -0.396 -0.404 -0.041 -0.108 1.483 -0.850 -0.142 0.130 -0.049 110

Fort Worth-Arlington, TX PMSA 2,113,278 7 345 -0.611 -0.487 -0.385 -0.398 -0.011 -0.122 -0.771 -1.195 -0.176 0.108 -0.024 111

Dayton-Springfield, OH MSA 933,312 3 62 -0.611 -0.760 -0.456 -0.470 -0.126 -0.176 -1.089 1.449 -0.096 0.137 -0.119 112

Hamilton-Middletown, OH PMSA 363,184 3 21 -0.617 -0.484 -0.380 -0.386 -0.049 -0.057 -0.331 -1.097 -0.094 0.153 -0.056 113

Birmingham, AL MSA 997,770 6 78 -0.627 -0.909 -0.307 -0.307 -0.068 -0.158 -0.737 -0.746 -0.117 0.000 -0.072 114

Hartford, CT MSA 1,231,125 1 134 -0.631 -0.587 0.092 0.078 0.083 0.160 0.378 -0.322 0.098 -0.148 0.053 115

Gainesville, FL MSA 243,574 5 25 -0.645 -0.977 -0.154 -0.166 -0.155 -0.276 -0.256 -0.696 -0.134 -0.249 -0.144 116

Hickory-Morganton-Lenoir, NC MSA 365,364 5 67 -0.660 -0.784 -0.503 -0.516 -0.214 -0.291 -1.272 -0.432 -0.308 0.085 -0.193 117

San Antonio, TX MSA 1,928,154 7 113 -0.665 -0.794 -0.519 -0.534 -0.141 -0.224 -0.702 -1.278 -0.192 0.151 -0.133 118

Richland-Kennewick-Pasco, WA MSA 245,649 9 20 -0.678 -1.137 -0.421 -0.430 -0.049 0.034 0.869 -0.846 -0.042 0.253 -0.057 119

Chattanooga, TN-GA MSA 510,388 6 43 -0.679 -1.000 -0.452 -0.447 -0.154 -0.201 -1.498 -0.201 -0.152 0.099 -0.144 120

Baton Rouge, LA MSA 685,419 7 54 -0.694 -0.918 -0.315 -0.322 -0.095 -0.075 -1.643 0.165 -0.153 0.057 -0.096 121

Kansas City, MO-KS MSA 2,005,888 4 239 -0.726 -0.825 -0.370 -0.375 -0.067 -0.013 -1.611 -1.152 0.044 0.155 -0.074 122

El Paso, TX MSA 751,296 7 55 -0.729 -0.851 -0.676 -0.684 -0.229 -0.415 0.773 -1.185 -0.239 0.148 -0.207 123

Omaha, NE-IA MSA 799,130 4 83 -0.733 -0.965 -0.451 -0.453 -0.124 -0.141 -1.244 -1.270 -0.097 0.133 -0.121 124

Pittsburgh, PA MSA 2,287,106 2 136 -0.735 -0.796 -0.459 -0.451 -0.114 -0.120 -0.214 -0.001 0.011 0.156 -0.112 125

Detroit, MI PMSA 4,373,040 3 340 -0.741 -0.689 -0.230 -0.232 -0.002 0.088 -0.295 -0.263 0.047 0.095 -0.021 126

Racine, WI PMSA 200,601 3 24 -0.767 -0.678 -0.228 -0.224 -0.043 0.084 -0.701 1.144 0.010 0.085 -0.054 127

Knoxville, TN MSA 785,490 6 145 -0.871 -0.877 -0.418 -0.424 -0.149 -0.197 -0.952 0.403 -0.206 0.027 -0.145 128

Greenville-Spartanburg-Anderson, SC MSA 159,057 5 280 -0.888 -0.958 -0.474 -0.484 -0.121 -0.163 -1.835 -0.817 -0.257 0.106 -0.122 129

Ann Arbor, MI PMSA 630,518 3 76 -0.892 -0.853 -0.101 -0.122 -0.002 0.088 0.193 -0.967 0.014 -0.059 -0.024 130

Springfield, MO MSA 383,637 4 34 -0.895 -0.992 -0.551 -0.556 -0.223 -0.120 -1.546 -1.114 -0.103 0.218 -0.206 131

Fort Wayne, IN MSA 528,408 3 32 -0.906 -1.234 -0.626 -0.631 -0.150 -0.084 -2.281 -1.307 -0.109 0.320 -0.146 132

Oklahoma City, OK MSA 1,213,704 7 253 -0.917 -1.073 -0.441 -0.446 -0.157 -0.198 -0.903 -1.312 -0.180 0.040 -0.153 133

Des Moines, IA MSA 536,664 4 64 -0.933 -1.198 -0.390 -0.406 -0.100 -0.089 -1.686 -1.135 -0.116 0.075 -0.106 134

Wichita, KS MSA 589,195 4 44 -0.940 -1.082 -0.603 -0.608 -0.153 -0.093 -2.230 -1.350 -0.181 0.284 -0.150 135

Akron, OH PMSA 699,935 3 79 -0.968 -1.199 -0.370 -0.376 -0.087 -0.025 -0.262 -1.122 -0.029 0.103 -0.096 136

Little Rock-North Little Rock, AR MSA 657,416 7 90 -0.970 -1.240 -0.412 -0.426 -0.140 -0.281 -1.699 -0.777 -0.161 -0.067 -0.139 137

Bryan-College Station, TX MSA 179,992 7 26 -1.020 -1.189 -0.394 -0.420 -0.185 -0.232 0.234 -1.123 -0.201 -0.053 -0.178 138

Cedar Rapids, IA MSA 209,226 4 25 -1.042 -1.417 -0.482 -0.489 -0.139 -0.075 -1.014 -1.260 -0.093 0.160 -0.140 139

Jackson, MS MSA 483,852 6 37 -1.060 -1.109 -0.426 -0.439 -0.116 -0.140 -1.512 -0.890 -0.157 0.047 -0.123 140

Portland, ME MSA 256,178 1 20 -1.061 -1.163 0.026 0.011 -0.112 -0.104 1.682 0.923 -0.088 -0.376 -0.119 141

Augusta-Aiken, GA-SC MSA 516,357 5 59 -1.076 -1.164 -0.488 -0.486 -0.116 -0.216 -2.080 -0.933 -0.171 0.044 -0.123 142
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TABLE A1 (PROVISIONAL): LIST OF METROPOLITAN AREAS BY LAND PRICE DIFFERENTIAL, 2006-2008

Scranton-Wilkes Barre-Hazleton, PA MSA 614,565 2 26 -1.076 -1.013 -0.470 -0.467 -0.177 -0.188 -0.356 -0.060 0.013 0.049 -0.173 143

Columbia, SC MSA 627,630 5 64 -1.093 -1.353 -0.377 -0.384 -0.138 -0.238 -1.567 -0.705 -0.240 -0.089 -0.141 144

Mobile, AL MSA 591,599 6 104 -1.100 -1.000 -0.412 -0.402 -0.174 -0.170 -1.934 -0.035 -0.159 0.001 -0.171 145

Brownsville-Harlingen-San Benito, TX MSA 396,371 7 33 -1.101 -1.552 -0.794 -0.799 -0.301 -0.490 -1.867 -0.115 0.123 -0.276 146

Biloxi-Gulfport-Pascagoula, MS MSA 355,075 6 26 -1.121 -1.237 -0.396 -0.406 -0.145 -0.181 -1.923 1.047 -0.182 -0.027 -0.148 147

Canton-Massillon, OH MSA 408,005 3 29 -1.142 -0.713 -0.523 -0.518 -0.161 -0.059 -1.634 -0.831 -0.071 0.200 -0.161 148

Kalamazoo-Battle Creek, MI MSA 462,250 3 23 -1.173 -1.387 -0.483 -0.479 -0.127 0.006 -0.238 -0.960 -0.066 0.212 -0.134 149

Pensacola, FL MSA 455,102 5 86 -1.181 -1.412 -0.341 -0.365 -0.179 -0.257 -1.712 1.071 -0.142 -0.156 -0.178 150

Lansing-East Lansing, MI MSA 453,603 3 41 -1.209 -1.501 -0.392 -0.405 -0.118 0.062 -0.066 -1.103 -0.016 0.165 -0.128 151

Buffalo-Niagara Falls, NY MSA 1,123,804 2 83 -1.210 -1.418 -0.500 -0.504 -0.097 0.021 -0.686 -0.523 0.029 0.238 -0.111 152

Danville city Davenport-Moline-Rock Island, IA-IL MSA 362,790 4 22 -1.239 -0.652 -0.505 -0.537 -0.126 0.059 -1.799 -1.211 -0.055 0.272 -0.135 153

Grand Rapids-Muskegon-Holland, MI MSA 1,157,672 3 94 -1.279 -1.345 -0.435 -0.440 -0.109 -0.144 -0.586 -0.988 -0.127 0.021 -0.122 154

Beaumont-Port Arthur, TX MSA 378,477 7 74 -1.295 -1.704 -0.601 -0.610 -0.081 -0.006 -1.368 -0.532 -0.181 0.304 -0.099 155

Appleton-Oshkosh-Neenah, WI MSA 385,264 3 40 -1.311 -1.537 -0.414 -0.409 -0.100 0.034 -0.641 -0.576 -0.073 0.152 -0.115 156

Toledo, OH MSA 631,275 3 55 -1.311 -1.477 -0.513 -0.520 -0.122 -0.026 -1.257 -0.527 -0.014 0.197 -0.134 157

Montgomery, AL MSA 354,108 6 24 -1.343 -1.545 -0.444 -0.464 -0.147 -0.257 -1.923 -0.917 -0.208 -0.077 -0.155 157

Youngstown-Warren, OH MSA 554,614 3 21 -1.398 -1.530 -0.603 -0.615 -0.175 -0.078 -0.968 -0.929 -0.044 0.231 -0.179 159

Albany-Schenectady-Troy, NY MSA 906,208 2 82 -1.475 -1.594 -0.201 -0.204 -0.046 -0.021 -0.492 -0.320 -0.008 -0.126 -0.075 160

Flint, MI PMSA 424,043 3 61 -1.535 -1.696 -0.608 -0.632 -0.002 0.088 -0.863 -0.973 -0.014 0.377 -0.040 161

Syracuse, NY MSA 725,610 2 45 -1.544 -1.528 -0.522 -0.526 -0.124 -0.072 -1.288 -0.580 -0.021 0.142 -0.141 162

Peoria-Pekin, IL MSA 357,144 3 25 -1.611 -1.776 -0.511 -0.523 -0.080 0.164 -0.960 -1.192 0.040 0.348 -0.106 163

Saginaw-Bay City-Midland, MI MSA 390,032 3 29 -1.825 -1.829 -0.526 -0.523 -0.148 -0.182 -0.386 -0.649 -0.039 0.023 -0.168 164

Rochester, NY MSA 1,093,434 2 81 -1.859 -1.887 -0.493 -0.501 -0.112 -0.072 -0.458 0.019 0.002 0.092 -0.139 165

Census Divisions:

New England 7,258,947 1 680 -0.073 -0.020 0.284 0.282 0.067 0.135 1.909 0.195 0.125 -0.223 0.053 5

Middle Atlantic 35,391,729 2 2,251 0.267 0.376 0.159 0.167 0.067 0.091 0.584 0.022 0.166 0.006 0.062 2

East North Central 32,900,944 3 3,759 -0.479 -0.484 -0.229 -0.229 -0.034 0.060 -0.538 -0.246 0.029 0.138 -0.040 6

West North Central 11,171,569 4 1,210 -0.513 -0.544 -0.297 -0.298 -0.057 0.027 -1.058 -0.930 0.021 0.164 -0.060 7

South Atlantic 41,293,071 5 8,403 0.131 0.137 -0.026 -0.023 -0.028 -0.104 -0.018 0.057 -0.109 -0.019 -0.020 3

East South Central 8,457,649 6 1,079 -0.653 -0.778 -0.378 -0.385 -0.105 -0.150 -0.758 -0.561 -0.140 0.076 -0.103 9

West South Central 23,188,778 7 2,627 -0.547 -0.624 -0.395 -0.399 -0.068 -0.158 -0.965 -0.861 -0.167 0.108 -0.070 8

Mountain 15,526,710 8 5,198 0.121 0.097 -0.070 -0.074 -0.042 -0.053 0.285 -0.101 -0.100 0.044 -0.031 4

Pacific 38,613,212 9 4,395 0.584 0.559 0.440 0.436 0.086 0.105 0.514 0.914 0.090 -0.189 0.086 1

Population Categories:

Less than 500,000 18,655,922 2,712 -0.534 -0.591 -0.214 -0.222 -0.068 -0.032 -0.271 -0.083 -0.053 0.049 -0.070 4

500,000 to 1,500,000 54,211,795 7,366 -0.416 -0.467 -0.193 -0.197 -0.060 -0.065 -0.190 -0.180 -0.059 0.029 -0.060 3

1,500,000 to 5,000,000 91,110,643 13,999 0.078 0.072 0.041 0.041 0.010 0.007 0.067 0.091 -0.004 -0.021 0.010 2

5,000,000+ 49,824,250 5,525 0.492 0.575 0.201 0.208 0.076 0.079 0.180 -0.038 0.099 0.002 0.075 1



Observations 31,327

Mean Lot Size (Acres) 31.694

(301.459)

Mean Price Per Acre (Dollars) 931,458

(4,638,456)

No Proposed Use 19.8%

Proposed Use Commercial 0.6%

Proposed Use Industrial 9.6%

Proposed Use Retail 9.9%

Proposed Use Single Family 8.6%

Proposed Use MultiFamily 4.7%

Proposed Use Office 7.5%

Proposed Use Apartment 3.4%

Proposed Use Hold for Development 6.9%

Proposed Use Hold for Investment 2.3%

Proposed Use Mixed Use 2.2%

Proposed Use Medical 1.5%

Proposed Use Apartment 1.0%

Has Valid Address 22,405

Mean Meters from MSA Center 37,136

(41,391)

Mean Seconds from MSA Center 1,868

(1,635)

Sale in 2005 0.3%

Sale in 2006 0.6%

Sale in 2007 12.6%

Sale in 2008 40.7%

Sale in 2009 33.6%

Sale in 2010 12.3%

TABLE A2: SUMMARY STATISTICS FOR OBSERVED LAND SALES

Data from CoStar COMPS database. Downloaded from June 28 to June 30,

and on September 7, 2010.



(1) (2) (3) (4)

Log lot size (acres) -0.637 -0.594 -0.591 -0.593

(0.010) (0.010) (0.010) (0.010)

Log driving distance to city center (meters) -0.234 0.235

(0.033) (0.098)

Log driving time to city center (seconds) -0.357 -0.672

(0.041) (0.122)

No planned use -0.192 -0.198 -0.192 -0.186

(0.032) (0.041) (0.040) (0.039)

Planned use: commercial -0.382 -0.325 -0.320 -0.317

(0.083) (0.102) (0.101) (0.101)

Planned use: Industrial -0.326 -0.358 -0.361 -0.362

(0.026) (0.027) (0.027) (0.026)

Planned use: retail 0.276 0.275 0.272 0.268

(0.025) (0.031) (0.031) (0.030)

Planned use: single family -0.137 -0.116 -0.102 -0.092

(0.025) (0.032) (0.033) (0.032)

Planned use: multi-family -0.132 -0.157 -0.152 -0.142

(0.035) (0.042) (0.042) (0.041)

Planned use: office -0.011 -0.022 -0.025 -0.026

(0.031) (0.033) (0.032) (0.032)

Planned use: apartment 0.304 0.169 0.165 0.172

(0.061) (0.058) (0.058) (0.058)

Planned use: hold for development 0.012 -0.001 0.003 0.008

(0.039) (0.040) (0.039) (0.039)

Planned use: hold for investment -0.362 -0.355 -0.346 -0.339

(0.055) (0.068) (0.067) (0.065)

Planned use: mixed use 0.280 0.378 0.381 0.390

(0.074) (0.048) (0.049) (0.051)

Planned use: medical 0.179 0.200 0.192 0.182

(0.045) (0.057) (0.056) (0.057)

Planned use: parking 0.247 0.101 0.100 0.113

(0.078) (0.084) (0.084) (0.085)

Number of Observations 31,252  22,349  22,349  22,349  

Adjusted R-squared 0.609 0.616 0.618 0.619

TABLE A3: LAND VALUE AUXILLIARY REGRESSION

Dependent Variable: Log Price per Acre

Robust standard errors, clustered by MSA/PMSA, reported in parentheses.  Land-value 

data from CoStar COMPS database for years 2006 to 2010.  Driving distance and driving 

time to city center from Google Maps automated programming interface.  All 

specifications include a full set of dummies for MSA/PMSA and quarter of sale (not 

shown).


