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Abstract

We use a frictionless neoclassical general-equilibrium model to explain cross-metro variation in

population density based on three broad amenity types: quality of life, productivity in tradables,

and productivity in non-tradables. Analytically, we demonstrate the dependence of quantities on

amenities through substitution possibilities in consumption and production. Our calibrated model

predicts large elasticities, consistent with variation in U.S. data, and estimates of local labor supply

and demand. From only differences in wages and housing costs, we explain half of the variation

in density, especially through quality of life amenities. We also show that density information can

provide or refine measures of land value and local productivity. Our approach can be used to study

a wide variety of urban quantities.
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1 Introduction

In the United States, population densities vary across space far more than the prices of labor and

housing. At the metropolitan level, the average residential density of New York is almost 50 times

that of Texarkana. Meanwhile, wage levels in the highest-paying metro are not even double that

of the lowest, and housing costs in the most expensive metro average only four times that of the

lowest. In this paper, we examine whether small differences in prices are compatible with large

differences in quantities, like population density, in the neoclassical model of Rosen (1979) and

Roback (1982), with mobile households and firms, and both tradable and non-tradable sectors.

In the neoclassical model, differences in prices and quantities across metro areas stem from lo-

cal amenities, which work through three different channels: quality of life, tradable-sector produc-

tivity, and non-tradable-sector productivity. The first two channels determine the extent to which

people follow jobs or jobs follow people, a topic long debated (Blanco 1963, Borts and Stein

1964).1 The third channel determines whether both jobs and people follow availabile housing, a

subject that has received more recent attention (Glaeser and Gyourko 2006, Glaeser, Gyourko, and

Saks 2006, Saks 2008). Although researchers regularly use the neoclassical model to examine the

relationship between prices and amenities, they rarely do so to examine the relationship between

quantities and amenities. Existing work often imposes strong restrictions on the model or alters its

structure, particularly in the non-tradable sector, and provides only numerical results, which offer

limited intuition (e.g., Haughwout and Inman 2001, Rappaport 2008a, 2008b, Desmet and Rossi

Hansberg forthcoming, Moretti forthcoming).2

Here we consider the relationships between amenities and quantities analytically, using the

canonical neoclassical model with few restrictions. We show how quantity differences depend on

1See Hoogstra, Florax, and Dijk (2005) for an interesting meta-analysis of this literature.
2Haughwout and Inman (2001) reduce the non-tradable sector to a fixed land market. Rappaport (2008a, 2008b)

constrains productivity in the non-tradable sector to be the same as in the tradable sector, and assumes the elasticity of
substitution between factors in tradable production is one. Glaeser, Gyourko, and Saks (2006) and Moretti (forthcom-
ing) use an ad-hoc partial equilibrium supply function, thereby excluding labor from the non-tradable sector, and force
households to consume a fixed amount of housing. Desmet and Rossi-Hansberg (forthcoming) constrain elasticities of
substitution in consumption and tradable production to be one, and model the non-tradable sector using a monocentric
city, where households consume a single unit of housing. Only Rappaport’s work is useful for studying population
density, although his work is done numerically, and is not linked to data in a close manner.
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cost and expenditure shares, tax rates, and separate margins of substitution in consumption and in

both types of production. The substitution margins reflect three separate behavioral responses that

lead to higher densities, including the willingness of households to crowd into existing housing,

shifts in production away from land-intensive goods, and the construction of housing at greater

heights. Urban quantities depend on these substitution possibilities in a first-order manner, while

prices do not. Using a pre-set calibration of the United States economy from Albouy (2009),

our results suggest that substitution possibilities in the non-tradable sector, including housing, are

particularly important.

The analytical exercise maps reduced-form elasticities often estimated in the literature, e.g., of

local labor or housing supply, to more elementary structural parameters. This mapping reframes

partial-equilibrium shifts in supply and demand as general-equilibrium responses to amenity changes,

e.g., an increase in labor demand is mapped to an increase in tradable-sector productivity. The cal-

ibrated model implies that quantities respond much more than prices to differences in amenities

over the long run. The model produces large (positive) labor-supply elasticities that are remarkably

consistent with estimates found in Bartik (1991) and Notowidigo (2012), and even larger (nega-

tive) labor-demand elasticities consistent with estimates in Card (2001). Moreover, our numbers

are consistent with the stylized fact that population density varies by an order of magnitude more

than wages and housing costs across metro areas.

Our research complements work on agglomeration economies, which examines the reverse

relationship of how population affects amenities, especially productivity. For example, we model

how areas with higher quality of life become denser, thereby making them more productive through

agglomeration. Agglomeration then creates a multiplier effect, whereby higher density increases

productivity, bringing forth even higher density and productivity. We also consider the possibility

of greater density reducing quality of life through congestion. Under our calibration, we find that

these multiplier effects are potentially important, magnifying or dampening long-run behavioral

responses up to 15-percent.

We apply the model empirically by using it to relate observable prices to population density
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in 276 American metropolitan areas using Census data. The pre-set calibration does remarkably

well, explaining half of the variation in population density through quality of life and tradable-

sector productivity predicted by two simple measures of wages and housing costs. Our calibration

fits the data better than those that ignore substitution possibilities, e.g., in consumption or non-

tradable production, or assume that they are all unit elastic, as in a Cobb-Douglas economy.

If the calibration produces accurate elasticity values, variation in population density not ex-

plained by quality of life may substitute for missing data on land prices and help to identify pro-

ductivity in the tradable and non-tradable sectors. This approach suggests that metro areas such as

New York, Chicago, and Houston have rather productive non-tradable sectors, at least historically.

On the other hand, metros such as San Francisco and Seattle have far less productive non-tradable

sectors, despite having very productive tradable sectors.

Our last exercise explores the relative importance of different amenities in explaining where

people live. A variance decomposition suggests that quality of life explains a greater fraction of

population density than does tradable-sector productivity, even though the latter varies more in

value and affects wage and housing costs more. This conclusion is reinforced if population den-

sity increases tradable-sector productivity or reduces quality of life. Productivity in non-tradables

explains density more than the other types of amenities, although this may have much to do with

how it is measured. We also simulate how population density might change if federal taxes were

made geographically neutral. This tends to increase the influence of tradable-sector productivity

and multipliers from agglomeration feedback.

The general-equilibrium model of location, with homogenous agents, provides a different point

of view than dynamic partial-equilibrium models of location with heterogenous agents (e.g., Ken-

nan and Walker 2011). Partial-equilibrium approaches typically do not consider how wages and

housing costs depend on population sizes. Moreover, the focus of such work is to explain migra-

tion decisions over short and medium run horizons, while we examine population differences over

the very long run.

The rest of the paper is organized as follows: Section 2 introduces the model and discusses
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analytical results. Section 3 provides results from the calibrated model. Section 4 estimates long

run elasticities of labor and housing demand and supply. Section 5 provides new productivity

estimates and decomposes the determinants of population density. Section 6 concludes.

2 Locational Equilibrium of Quantities, Prices, and Amenities

2.1 Set-up

To explain how prices and quantities vary with amenity levels across cities, we use the model of

Albouy (2009a), which adds federal taxes to the general-equilibrium three-equation Roback (1982)

model. The national economy contains many cities, indexed by j, which trade with each other and

share a homogenous population of mobile households. Households supply a single unit of labor

in their city of residence; they consume a numeraire traded good x and a non-traded “home” good

y with local price pj .3 All input and output markets are perfectly competitive, and all prices and

quantities are homogenous within cities, though they vary across cities.

Cities differ exogenously in three general attributes, each of which is an index meant to sum-

marize the value of amenities to households and firms: (i) quality of life Qj raises household

utility, (ii) trade-productivity AjX lowers costs in the tradable sector, and (iii) home-productivity

AjY lowers costs in the non-tradable sector.4

Firms produce traded and home goods out of land, capital, and labor. Within a city, factors

receive the same payment in either sector. Land L is heterogenous across cities, immobile, and

receives a city-specific price rj . Each city’s land supply Lj(rj) may depend positively on rj .

Capital K is fully mobile across cities and receives the price ı̄ everywhere. The supply of

capital in each city Kj is perfectly elastic at this price. The national level of capital may be fixed

3In application, the price of the home good is equated with the cost of housing services. Non-housing goods are
considered to be a composite commodity of traded goods and non-housing home goods.

4All of these attributes depend on a vector of natural and artificial city amenities, Zj = (Zj1 , ..., Z
j
K), through

functional relationships Qj = Q̃(Zj), AjX = ÃX(Zj), and AjY = ÃY (Zj). For a consumption amenity, e.g., clement
weather, ∂Q̃/∂Zk > 0; for a trade-production amenity, e.g., navigable water, ∂ÃX/∂Zk > 0; for a home-production
amenity, e.g., flat geography, ∂ÃY /∂Zk > 0. It is possible that a single amenity affects more than one attribute or
affects an attribute negatively.
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or depend on ı̄. Households N are fully mobile, have identical tastes and endowments, and each

supplies a single unit of labor. Household size is fixed. Wages wj vary across cities because

households care about local prices and quality of life. The total number of households is NTOT =∑
j N

j , which may be fixed or determined by international migration.

Households own identical diversified portfolios of land and capital, which pay an income R =

(NTOT )−1
∑

j r
jLj from land and I = (NTOT )−1

∑
j ı̄K

j from capital. Total income mj = wj +

R + I varies across cities only as wages vary. Out of this income households pay a linear federal

income tax τmj , which is redistributed in uniform lump-sum payments T . Household preferences

are modeled by a utility function U(x, y;Qj) which is quasi-concave over x, y, and Qj . The

expenditure function for a household in city j is

e(pj, u;Qj) ≡ min
x,y
{x+ pjy : U(x, y;Qj) ≥ u}.

Assume Q enters neutrally into the utility function and is normalized so that e(pj, u;Qj) =

e(pj, u)/Qj , where e(pj, u) ≡ e(pj, u; 1).5

Operating under perfect competition, firms produce traded and home goods according to the

functions Xj = AjXFX(LjX , N
j
X , K

j
X) and Y j = AjY FY (LjY , N

j
Y , K

j
Y ), where FX and FY are

concave and exhibit constant returns to scale. We assume Hicks-Neutral productivity. Unit cost in

the traded-good sector of city j is

cX(rj, wj, ı̄;AjX) ≡ min
L,N,K

{rjL+ wjN + ı̄K : AjXF (L,N,K) = 1}.

Similar to the relationship between quality of life and the expenditure function, let cX(rj, wj, ı̄;AjX) =

cX(rj, wj, ı̄)/AjX , where cX(rj, wj, ı̄) ≡ cX(rj, wj, ı̄; 1). A symmetric definition holds for the unit

cost in the home-good sector cY .

5The model generalizes to a case with heterogenous workers that supply different fixed amounts of labor if these
workers are perfect substitutes in production, have identical homothetic preferences, and earn equal shares of income
from labor.
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2.2 Equilibrium Conditions

Each city can be described by a system of sixteen equations in sixteen endogenous variables: three

prices pj, wj, rj , and thirteen quantities xj, yj, Xj, Y j, N j, N j
X , N

j
Y , L

j, LjX , L
j
Y , K

j, Kj
X , K

j
Y . We

begin by having these depend on three exogenous attributes Qj, AjX , A
j
Y and a land supply func-

tion Lj(rj). In this scenario, the system of equations has a block-recursive structure, allowing us to

first determine prices, where most researchers stop, then determine per-capita consumption quan-

tities, and finally, production quantities, including total population. This block-recursive structure

is broken if amenities are made endogenous to quantities, e.g., if AjX = AjX0(N
j)α where AjX0 is

trade-productivity due to fixed natural advantages, and (N j)α is due to agglomeration economies.

Endogenizing amenities is more important for comparative statics, e.g., increasing AjX0 changes

N j , than measurement, where N j may be treated as fixed so long as we are satisfied in measur-

ing the composition AjX0(N
j)α. Throughout, we adopt a “small open city” assumption and take

nationally determined variables ū, ı̄, I, R, T as given for any individual city.6

2.2.1 Price Conditions

Since households are fully mobile, they must receive the same utility across all inhabited cities.

Higher prices or lower quality of life are compensated with greater after-tax income,

e(pj, ū)/Qj = (1− τ)(wj +R + I) + T, (1)

where ū is the level of utility attained nationally by all households.

Firms earn zero profits in equilibrium. For given output prices, firms in more productive cities

6In a closed city, we could instead take N j or Kj as given, and endogenize factor incomes Rj or Ij . In the open
city we assume that the federal government’s budget is given by τ

∑
j N

jmj + T
∑
j N

j = 0, so a city with average
income receives a transfer which exactly offsets its taxes.
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must pay higher rents and wages,

cX(rj, wj, ı̄)/AjX = 1 (2)

cY (rj, wj, ı̄)/AjY = pj. (3)

Equations (1), (2), and (3) simultaneously determine the city-level prices pj, rj , and wj for each

city as implicit functions of the three attributes Qj, AjX , and AjY . In equilibrium, these condi-

tions provide a one-to-one mapping between unobserved city attributes and potentially observable

prices, obviating the need to examine quantities.

2.2.2 Consumption Conditions

In deciding their consumption quantities xj and yj , households face the budget constraint

xj + pjyj = (1− τ)(wj +R + I)j + T, (4)

where pj and wj are determined by the price conditions. Optimal consumption is determined in

conjunction with the tangency condition

(∂U/∂y) / (∂U/∂x) = pj. (5)

As we assume preferences are homothetic, Qj does not affect the marginal rate of substitution.

Thus, in areas where Qj is higher, but pj is the same, households consume less of x and y in

equal proportions, holding the ratio y/x constant, similar to an income effect. Holding Qj con-

stant, increases in pj are compensated by increases in wj so that households reduce their relative

consumption y/x due to a pure substitution effect.
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2.2.3 Production Conditions

With prices and per-capita consumption levels accounted for, Levels of output Xj, Y j , employ-

ment N j, N j
X , N

j
Y , capital Kj, Kj

X , K
j
Y , and land Lj, LjX , L

j
Y are determined by eleven equations

describing production and market clearing. The first six express conditional factor demands using

Shephard’s Lemma. Because of constant returns to scale and Hicks neutrality, the derivative of

the uniform unit-cost function equals the ratio of the relevant input, augmented by city-specific

productivity, to output:

∂cX/∂w = AjXN
j
X/X

j (6)

∂cX/∂r = AjXL
j
X/X

j (7)

∂cX/∂i = AjXK
j
X/X

j (8)

∂cY /∂w = AjYN
j
Y /Y

j (9)

∂cY /∂r = AjYL
j
Y /Y

j (10)

∂cY /∂i = AjYK
j
Y /Y

j. (11)

The next three conditions express the local resource constraints for labor, land, and capital under

the assumption that factors are fully employed.

N j = N j
X +N j

Y (12)

Lj = LjX + LjY (13)

Kj = Kj
X +Kj

Y (14)

Equation (13) differs from the others as local land is determined by the supply function,

Lj = Lj(rj), (15)
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Together, the assumptions of an internally homogenous open city, exogenous amenities, and ho-

mogeneity of degree one cost and expenditure functions imply that all of the production quantity

predictions increase proportionally with the quantity of land. If land in a city doubles, labor and

capital will migrate in to also double, so that all prices and per-capita quantities remain the same.

By focusing on density, we can normalize land supply to a single unit, so that Lj(rj) = 1 for all

cities.7

The last condition requires that the local home-good market clears.

Y j = N jyj (16)

Walras’ Law makes redundant the market clearing equation for tradable output, which includes net

per-capita transfers from the federal government T − τmj .

2.3 Log-Linearization around National Averages

The system described by conditions (1) to (16) is generally non-linear.8 To obtain closed-form

solutions, we log-linearize these conditions. Hence, we express each city’s price and quantity

differentials in terms of its amenity differentials, relative to the national average. These differentials

are expressed in logarithms so that for any variable z, ẑj ≡ ln zj−ln z̄ ∼= (zj − z̄) /z̄ approximates

the percent difference in city j of z relative to the national average z̄.

The log-linearization requires several economic parameters evaluated at the national average.

For households, denote the share of gross expenditures spent on the traded and home good as

sx ≡ x/m and sy ≡ py/m; denote the share of income received from land, labor, and capital

income as sR ≡ R/m, sw ≡ w/m, and sI ≡ I/m. For firms, denote the cost share of land, labor,

7In principle, land supply can vary on two different margins. At the extensive margin, an increase in land sup-
ply corresponds to a growing city boundary. At the intensive margin, an increase in land supply takes the form of
employing previously unused land within a city’s border. By assuming that all factors are employed, we rule out the
possibility of any intensive margin changes.

8One exception is when the economy is fully Cobb-Douglas, and there is no income received from land, capital,
or government. In Appendix A, we present results from a nonlinear simulation of the model and argue that log-
linearization accurately approximates the model.
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and capital in the traded-good sector as θL ≡ rLX/X , θN ≡ wNX/X , and θK ≡ ı̄KX/X; denote

equivalent cost shares in the home-good sector as φL, φN , and φK . Finally, denote the share of land,

labor, and capital used to produce traded goods as λL ≡ LX/L, λN ≡ NX/N , and λK ≡ KX/K.

Assume the home-good is more cost-intensive in land relative to labor than the traded-good, both

absolutely, φL ≥ θL, and relatively, φL/φN ≥ θL/θN , implying λL ≤ λN .

The first three price conditions are log-linearized as

−sw(1− τ)ŵj + syp̂
j = Q̂j (1*)

θLr̂
j + θN ŵ

j = ÂjX (2*)

φLr̂
j + φN ŵ

j − p̂j = ÂjY (3*)

These conditions are examined in depth in Albouy (2009b), and so here we just note that these

expressions involve only cost and expenditure shares and the marginal tax rate.

The log-linearized conditions describing consumption introduce the elasticity of substitution

in consumption, σD ≡ −e · (∂2e/∂2p)/[∂e/∂p · (e− p · ∂e/∂p)],

sxx̂
j + sy

(
p̂j + ŷj

)
= (1− τ)swŵ

j (4*)

x̂j − ŷj = σDp̂
j (5*)

Substituting equation (1*) into equations (4*) and (5*) produces the solutions x̂j = syσDp̂
j − Q̂j

and ŷj = −sxσDp̂j − Q̂j . These describe the substitution and quality of life effects discussed

earlier.

Even though our model contains homogenous households, one can think of higher values of σD

as approximating households with heterogeneous preferences who sort across cities. Households

with stronger tastes for y will choose to live in areas with lower prices p. At the equilibrium

levels of utility, an envelope of the mobility conditions for each type forms that of a representative

household, with greater preference heterogeneity reflected as more flexible substitution.9

9Roback (1980) discusses this generalization and the generalizations below for σX and σY .
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The log-linearized conditional factor demands describe how input demands depend on output,

productivity, and relative input prices.

N̂ j
X = X̂j − ÂjX + θLσ

LN
X

(
r̂j − ŵj

)
− θKσNKX ŵj (6*)

L̂jX = X̂j − ÂjX + θNσ
LN
X (ŵj − r̂j)− θKσKLX r̂j (7*)

K̂j
X = X̂j − ÂjX + θLσ

KL
X r̂j + θNσ

NK
X ŵj (8*)

N̂ j
Y = Ŷ j − ÂjY + φLσ

LN
Y (r̂j − ŵj)− φKσNKY ŵj (9*)

L̂jY = Ŷ j − ÂjY + φNσ
LN
Y (ŵj − r̂j)− φKσKLY r̂j (10*)

K̂j
Y = Ŷ j − ÂjY + φLσ

KL
Y r̂j + φNσ

NK
Y ŵj (11*)

The dependence on input prices is determined by three partial (Allen-Uzawa) elasticities of sub-

stitution in each sector. These are defined for each pair of factors, e.g., σLNX ≡ cX · (∂2cX/∂w∂r)

/ (∂cX/∂w · ∂cX/∂r) is for labor and land in the production of X . These values are taken at the

national average because we assume that production technology does not differ across cities. To

simplify matters, we also assume that the partial elasticities within each sector are the same, i.e.,

σNKX = σKLX = σLNX ≡ σX , and similarly for σY , as with a constant elasticity of substitution

production function.

A higher value of σX corresponds to more flexible production of the traded-good. With a

single traded good, firms can vary their production only by changing inputs. In a generalization

with multiple traded goods sold at fixed prices, firms could adjust their product mix to specialize in

producing goods where their input costs are relatively low. For example, areas with high land costs

and low labor costs would produce goods that use labor intensely but not land. A representative

zero-profit condition can be drawn as an envelope of the zero-profit conditions for each good, with

a greater variety of goods reflected as greater substituion possibilities, i.e., a larger σX .

A related argument exists for home goods. For instance, a high value of σY means that housing

producers can use labor and capital to build taller buildings in areas where the price of land is high.

Buildings can also be subdivided to produce more, but smaller, housing units. If all home goods
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are perfect substitutes, then an envelope of zero-profit conditions may be used as a representative

zero-profit condition. Because housing is durable, arriving at an equilibrium may take a long time.

For non-housing home goods, one can imagine retailers using taller shelves and restaurants hiring

more labor to move clients through faster.

Log-linearizing the resource constraints for labor, land, and capital yields

N̂ j = λNN̂
j
X + (1− λN)N̂ j

Y (12*)

L̂j = λLL̂
j
X + (1− λL)L̂jY (13*)

K̂j = λKK̂
j
X + (1− λK)K̂j

Y . (14*)

Equations (12*), (13*), and (14*) imply that the sector-specific changes in factors affect overall

changes in proportion to the factor share. The condition for land supply uses the elasticity εjL,r ≡

(∂Lj/∂r) · (r/Lj).

L̂j = εjL,rr̂
j (15*)

As new land is assumed identical to old land, the impact of amenities on population and other

production quantities will involve the term εjL,rr̂
j since quantities are proportional to the amount of

land. By focusing on density, we assume εjL,r = 0 for all cities. Wrapping up, the market clearing

condition for home-goods is simply

N̂ j + ŷj = Ŷ j. (16*)

2.4 Solving the Model

The solutions for the endogenous variables are expressed in terms of the amenity differentials Q̂j ,

ÂjX , and ÂjX . Because of the block-recursive structure, only equations (1*) to (3*) are needed for
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the price differentials.

r̂j =
1

sR

λN
λN − τλL

[
Q̂j +

(
1− 1

λN
τ

)
sxÂ

j
X + syÂ

j
Y

]
(17)

ŵj =
1

sw

1

λN − τλL

[
−λLQ̂j + (1− λL)sxÂ

j
X − λLsyÂ

j
Y

]
(18)

p̂j =
1

sy

1

λN − τλL

[
(λN − λL)Q̂j + (1− τ) (1− λL)sxÂ

j
X − (1− τ)λLsyÂ

j
Y

]
(19)

Higher quality of life leads to higher land and home-good prices but lower wages. Higher trade-

productivity increases all three prices, while higher home-productivity increases land prices but

decreases wages and the home-good price.

Putting solution (19) in equations (4*) and (5*) yields the per-capita consumption differentials

x̂j =
σD(1− τ)

λN − τλL

[
σD(λN − λL)− λN + τλL

σD(1− τ)
Q̂j + (1− λL)sxÂ

j
X − λLsyÂ

j
Y

]
(20)

ŷj = −sx
sy

σD(1− τ)

λN − τλL

[
sxσD(λN − λL) + sy(λN − τλL)

sxσD(1− τ)
Q̂j + (1− λL)sxÂ

j
X − λLsyÂ

j
Y

]
(21)

Households in trade-productive areas substitute towards tradable consumption and away from

non-tradable consumption, while households in home-productive areas do the opposite. In nicer

areas, households consume fewer home goods; whether they consume fewer tradable goods is

ambiguous, as the substitution effect is positive, but the income effect is negative.

Unfortunately, solutions for the other quantities, which also rely on production equations (6*)

through (16*) are more complicated and harder to intuit. As a notational short-cut, we express

the change in each quantity with respect to amenities using three reduced-form elasticities, each

composed of structural parameters. For example, the solution for population density is expressed

by

N̂ j =εN,QQ̂
j + εN,AX

ÂjX + εN,AY
ÂjY , (22)

where εN,Q is the elasticity of population density with respect to quality of life and εN,AX
and
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εN,AY
are defined similarly. The first reduced-form elasticity is given by

εN,Q =

[
λN − λL
λN

]
+ σD

[
sx(λN − λL)2

syλN(λN − λLτ)

]
+ σX

[
λ2
L

sw(λN − λLτ)
+

λLλN
sR(λN − λLτ)

]
+ σY

[
λ2
L(1− λN)

swλN(λN − λLτ)
+

λN(1− λL)

sR(λN − λLτ)
− (λN − λL)2

syλN(λN − λLτ)

]
+ εL,r

[
λN

sR(λN − λLτ)

]
(23)

We provide similar expressions for εN,AX
and εN,AY

in Appendix B.

After collecting terms by their corresponding structural elasticity, as in (23), one can see how

higher quality of life raises population through five behavioral responses. The first term reflects

that households are willing to consume fewer goods in nicer areas, similar to an income effect.

The second term, with σD, captures how households increase density by substituting away from

land-intensive goods, e.g., by crowding into existing housing. The third, with σX , expresses the

ability of firms in the traded-sector to substitute away from land towards labor and capital. The

fourth, with σY , reflects how home-goods become less land intensive, e.g., buildings get taller. The

fifth, with εL,r provides the population gain on the extensive margin, from more land being used.10

Each of the reduced-form elasticities between a quantity and a type of amenity may have up to

five similar structural effects. The key differences between the price and quantity solutions is that

the latter depend directly on substitution elasticities.

2.5 Agglomeration Effects

Given the above set-up, introducing simple forms of endogenous amenities is straightforward. We

consider two types we believe to be the most common: positive economies of scale in tradable

production and negative economies of scale in quality of life. For simplicity, both are assumed to

depend on population density, i.e., AjX = AjX0(N
j)α and Qj = Qj

0(N
j)−γ , where AjX0 and Qj

0

represent city j’s “natural advantages”, and α ≥ 0 and γ ≥ 0 are the reduced-form agglomeration

10We include the term associated with the elasticity of land supply in equation (23) for expository purposes. When
allowing εL,r to be non-zero, N̂ corresponds to population, as opposed to population density.
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elasticities. Natural advantages could be determined by local geographic features, local policies,

or be the result of historical path dependence (Bleakley and Lin 2012). The agglomeration pro-

cesses for productivity may be due to non-rival input sharing or knowledge spillovers, while the

diseconomies in quality of life may be due to congestion or pollution. The main assumption here

is that these processes follow a power law.

These agglomeration feedback effects result in the population solution now being

N̂ j = εN,Q(Q̂j
0 − γN̂ j) + εN,AX

(ÂjX0 + αN̂ j) + εN,AY
ÂjY 0

= (1 + γεN,Q − αεN,AX
)−1
(
εN,QQ̂

j
0 + εN,AX

ÂjX0 + εN,AY
ÂjY 0

)
≡ ε̃N,QQ̂

j
0 + ε̃N,AX

ÂjX0 + ε̃N,AY
ÂjY 0, (24)

taking AjY 0 = AjY as fixed. The multiplier (1 + γεN,Q − αεN,AX
)−1 reflects how the impact

of natural advantages is magnified through positive economies of scale and dampened by negative

ones. The multiplier effect depends as much on the population elasticities εN,Q and εN,AX
as on the

agglomeration parameters γ and α. Equation (24) simply re-expresses the reduced-form elasticities

in terms of only natural advantages. The modified elasticities may be smaller or larger than the

originals, depending on the agglomeration effects, and are appropriate to use in comparative static

exercises when the level of a natural advantage changes.

Our framework could also be used to study a variety of more complicated endogenous feedback

effects, although these would require more complicated solutions.

2.6 Identification of Production Amenities and Land Values

With accurate data on all price differentials r̂j, ŵj , and p̂j and knowledge of national economic

parameters, we can estimate amenity differentials Q̂j, ÂjX , and ÂjY with equations (1*), (2*), and

(3*). Reliable land value data comparable across metropolitan areas is not readily available, mak-
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ing it hard to identify trade- and home-productivity using equations (2*) and (3*).11 Combining

these equations to eliminate r̂j yields

θL
φL
p̂j +

(
θN − φN

θL
φL

)
ŵj = ÂjX −

θL
φL
ÂjY . (25)

As Albouy (2009b) discusses, one can estimate trade-productivity using the inferred cost formula

on the left-hand side of equation (25) if we assume home-productivity is constant across cities

ÂjY = 0. The resulting trade-productivity estimates are biased downwards, albeit slightly, in

home-productive areas.12

Without such a restriction, home and trade-productivity cannot be separately identified in equa-

tion (25), since higher trade-productivity pushes wages and housing costs upwards in the same

proportion that home-productivity pushes them downwards.13 To solve this identification problem,

we use additional information from population density not predicted by quality of life (“excess

density”). This comes from combining equations (1*) and (22), yielding

N̂ j − εN,Q[syp̂
j − sw(1− τ)ŵj︸ ︷︷ ︸

Q̂j

] = εN,AX
ÂjX + εN,AY

ÂjY . (26)

Equation (26) shows that excess density, on the left hand side, is explained by either trade or

home-productivity, on the right hand side. Because the system containing equations (25) and

(26) is exactly identified, our amenity estimates will perfectly predict population densities given

our parameter choices. Solving this system, we obtain measures of productivity based on the

11Albouy and Ehrlich (2012) estimates r̂j using recent transaction purchase data, which is only available for recent
years. Their analysis discusses several conceptual and empirical challenges from this approach.

12This point is seen directly in equation (25) after noting that θL << φL.
13From equation (2*), note that ÂjX equals the costs faced by traded-good firms. We define ÂjX −

θL

φL
ÂjY as the

costs of traded-good firms relative to home-good firms. The adjustment factor θL/φL arises because we eliminate r̂j .
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differentials N̂ j, ŵj , and p̂j

ÂjX =
θL[N j − εN,Q(syp

j − sw(1− τ)wj)] + φLεN,AY
[ θL

φL
pj + (θN − φN θL

φL
)wj]

θLεN,AX
+ φLεN,AY

(27)

ÂjY =
φL[N j − εN,Q(syp

j − sw(1− τ)wj)]− φLεN,AY
[ θL

φL
pj + (θN − φN θL

φL
)wj]

θLεN,AX
+ φLεN,AY

(28)

Trade-productiivty is measured by higher excess density and inferred costs. Home-productivity is

measured more strongly by higher excess density, and by lower inferred costs.

This strategy identifies land value differences by substituting the solutions into (2*) or (3*):

r̂j =
N̂ j − εN,Q(syp̂

j − sw(1− τ)ŵj)− εN,AX
θN ŵ

j − εN,AY
(p̂j − φN ŵj)

θLεN,AX
+ φLεN,AY

This rent measure depends on excess density not predicted by the restricted productivity differ-

entials we would estimate if land values were equal, i.e., if r̂j = 0, then ÂjX = θN ŵ
j and

ÂjY = φN ŵ
j − p̂j . Excess density beyond the restricted productivity differentials indicates higher

land values.

3 Calibrating the Model and Calculating Elasticities

3.1 Parameter Choices

Calibrating the model to the U.S. economy poses varying degrees of difficulty. Cost and expendi-

ture shares require information on the first moments of data (i.e., means) and may be ascertained

with some accuracy. Elasticities of substitution require credible identification involving second

moments (i.e., covariances of quantities with prices), and thus are subject to greater uncertainty.

The main calibration we use is shown in Table 1. It follows that of Albouy (2009a). We leave

discussion of expenditure and cost shares to Appendix C. We initially use σD = σX = σY =

0.667, as discussed in Albouy (2009a). We provide sensitivity analysis surrounding elasticities of

substitution below.
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For illustrative purposes, we consider fairly large values for the agglomeration elasticities.

Thus, we use α = 0.06 for the positive effect of population density on trade-productivity and

γ = 0.015 for the negative effect on quality of life.14

A few potential complications deserve special attention. First, incorrect parameter values might

bias our estimates. As discussed in Appendix C, the parameters come from a variety of sources

and are generally estimated across different years, geographies, and industries. Second, the log-

linearized model is most accurate for small deviations from the national average. As shown in

Figure 1, population density varies significantly, which could bias our results. We present a non-

linear simulation in Appendix A which suggests that our main conclusions are not affected by the

linear approximation.

We demonstrate how elasticities of substitution affect reduced form elasticities in Table 2. Our

estimates also might contain error due to certain modeling assumptions; we leave for future re-

search the task of examining how estimates vary with the model’s key assumptions (e.g., perfect

competition, free mobility). Our model most appropriately describes a long run equilibrium, where

moving costs or other frictions likely have little impact. Finally, the elasticity of home-good pro-

duction likely varies across cities (Saiz 2010). For example, home-producers in coastal cities might

find it more difficult to substitute away from capital or labor towards land. We do not consider city-

specific production elasticities, but Table 2 clearly shows how our reduced-form estimates change

with σY , as discussed next.

3.2 Reduced-Form Elasticities

In Table 2, we demonstrate how the reduced-form population elasticities depend on the structural

elasticities of substitution by substituting in the values of all of the other parameters. Thus, the five

14Ciccone and Hall (1996) estimate an elasticity of labor productivity with respect to population density of 0.06.
Rosenthal and Strange (2004) argue that a one-percent increase in population leads to no more than a 0.03-0.08 percent
increase in productivity. Our choice of α = 0.06 is broadly consistent with estimates reported in Table 2 of Glaeser
and Gottlieb (2008).
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effects seen in equation (23) are calibrated as

εN,Q ≈ 0.77 + 1.26σD + 1.95σX + 8.02σY + 11.85εL,r (29)

Calculating all of the elasticities using the main calibration where σD = σX = σY = 0.667 and

εL,r = 0 yields the population density differential in terms of the three amenity types,

N̂ j ≈ 8.26Q̂j + 2.21ÂjX + 2.88ÂjY . (30)

This expression is potentially misleading since a one-point increase in Q̂j has the value of a one-

point increase in income, while one-point increases in ÂjX and ÂjX have values of sx and sy of

income due to the size of their respective sectors. Normalizing the effects so that they are of equal

value increases the coefficients on the productivity effects,

N̂ j ≈εN,QQ̂j +
εN,AX

sx
sxÂ

j
X +

εN,AY

sy
syÂ

j
Y

= 8.26Q̂j + 3.45sxÂ
j
X + 8.00syÂ

j
Y . (31)

Thus we see that both quality of life and home-productivity have large impacts on local population

density, with an increase worth one-percent of income increasing population density by at least

eight percentage points; this effect is more than double the effect of trade-productivity. Much of

these differences depend on taxes, which discourage workers from being in trade-productive areas

and push them towards high quality of life and home-productive areas (Albouy 2009a). Making

taxes geographically neutral results in amenities having more similar effects,15

N̂ j ≈ 7.09Q̂j + 5.81sxÂ
j
X + 7.55syÂ

j
Y .

15As in Albouy (2009a), we define “geographically neutral” taxes as those which do not distort the household
location decision, summarized in equation (1*).
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The effects are still not equal: when quality of life increases, income effects imply households will

pack themselves more into housing, while substitution effects will cause producers to substitute

away from land towards labor, making consumption less land intensive. When trade-productivity

rises these substitution effects are weaker, and households still demand compensation in terms of

land-intensive goods.

The numbers in Table 2 imply that the most important substitution elasticity affecting location

decisions is σY . Without it, additional home-good production comes only from increases in home-

productivity or land released from the traded-good sector. Letting σY remain a free parameter,

N̂ j ≈ (2.92 + 8.02σY )Q̂j + (1.32 + 3.21σY )sxÂ
j
X + (3.17 + 7.24σY )syÂ

j
Y . (32)

Setting σY = 0 yields much lower elasticities: population density cannot increase much when the

housing stock cannot be made denser.16 On the other hand, setting σD = 0 eliminates substitu-

tion effects in consumption, but allows for income effects. As can be seen from Table 2, setting

σD = 0 means households respond less to quality of life and trade-productivity, but more to home-

productivity. In this case, a city’s productivity in building housing is more important than the

consumption amenities it offers households.

The overall dependence of density on substitution possibilities may be gauged by restricting

the elasticities to be equal, σD = σX = σY ≡ σ, revealing relatively small constants:

N̂ j ≈ (0.77 + 11.23σ)Q̂j + (5.17σ)sxÂ
j
X + (0.77 + 8.78σ)syÂ

j
Y . (33)

In a Cobb-Douglas economy, σ = 1, the implied elasticities are almost 50-percent higher than

in the base calibration σ = 0.667.17 Assuming a Cobb-Douglas economy seems innocuous for

predicting prices, when substitution elasticities have no first-order effect, but it significantly affects

results when modeling quantities.

16These estimates might be more accurate in predicting population flows to negative shocks in the spirit of Glaeser
and Gyourko (2005), who highlight the asymmetric impact of durable housing on population flows.

17When σ = 1, we obtain N̂ j ≈ 12.00Q̂j + 5.18sxÂ
j
X + 10.92syÂ

j
Y
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The multiplier effect for agglomeration feed back can also be calibrated. Calibrating our fairly

large values for positive and negative economies shows that the two could possibly offset each

other.

1

1 + γεN,Q − αεN,AX

≈ 1

1 + (0.015)(8.26)− (0.06)(2.21)
≈ 1.01

Taken individually, the multiplier for positive feedback (through trade-productivity) is 1.15, while

for negative feedback (through quality of life) it is 0.89. These calibrated values suggest that the

bias from ignoring agglomeration feedback might be modest. Basic agglomeration economies or

diseconomies do not seem to dominate other location forces due to natural advantages, historical

path dependence, or other local idiosyncrasies.

We have discussed results for only one urban quantity, population density. In Table 3 we list

the reduced-form elasticities for all endogenous prices and quantities. Panel A presents results for

the baseline tax treatment, while Panel B presents results for geographically neutral federal taxes.

4 General-Equilibrium Elasticities and Empirical Estimates

Our model sheds light on commonly estimated elasticities of local labor demand or housing supply,

predicated on partial-equilibrium models that consider labor and housing markets separately. Our

general-equilibrium model considers housing and labor markets simultaneously. The adjustments

underlying these elasticities might take place over the course of decades, if not generations. For

example, our model may account for changes in the durable housing stock or shifts in labor across

exportable sectors. As we discuss below, the source of the change in supply or demand may matter

a great deal.
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4.1 Local Labor Supply and Demand

In our general-equilibrium model, an increase in labor demand is caused by an increase in trade-

productivity AjX . If tradable goods are heterogenous and the number of cities is large, the increase

in trade-productivity could be due to an increase in the world price of the output produced in the

city. Holding productivity (and agglomeration) constant, a larger work force pushes down wages,

as firms must complement it with ever scarcer and more expensive land.18

An increase in labor supply can be brought about by an increase in quality of life Qj , which re-

duces the wage workers require. With homogenous workers, the labor supply curve slopes upward

because workers must be compensated for rising home-good prices.19

According to the calibration, an increase in trade-productivity produces the ratio

∂N̂

∂ŵ
=
∂N̂/∂ÂX

∂ŵ/∂ÂX
≈ 2.210

1.091
≈ 2.02,

which may be interpreted as an elasticity of local labor supply. Researchers have frequently tried

to estimate this elasticity using a method from Bartik (1991).20 Estimates seen in Bartik and

Nowtowidigo (2012) are generally in the range of 2 to 4. These fairly large values are remarkably

close to that predicted by the calibration. In addition, we can use the model to interpret possible

issues with the estimates. If increases in demand (i.e., increases in AX) are positively correlated

with increases in supply (i.e., increases in Q), then the elasticity of labor supply will be be biased

upwards.21

18Some models simply assume a fixed factor in production, e.g., land which is only available for the tradable sector.
Here, land in the tradable sector must compete with land in the non-tradable sector, causing the price to rise as more
households enter and consume non-tradable goods, such as housing.

19If workers have heterogeneous tastes, then the slope of the supply curve would rise, as higher wages will attract
those with weaker tastes for living in a location.

20Bartik uses an instrumental variable which predicts changes in local labor demand based on national changes
in industrial composition and a city’s past industrial structure. In general, an instrumental variable can identify
(∂N̂/∂ÂX)/(∂ŵ/∂ÂX) so long as the IV is correlated with changes in trade-productivity and uncorrelated with
changes in quality of life or home-productivity. Reconciling the Bartik IV with a long run general-equilibrium model
is challenging. If labor and capital are fully mobile, then a city’s past industrial structure should have very little pre-
dictive power over its current industrial structure. On the other hand, if a city’s past industrial structure is correlated
with unobservable determinants of current labor demand, then the Bartik instrument is endogenous.

21The estimates in Notowdigdo (2012) reveal an increase in housing costs, along with higher wages, that are con-
sistent with a small increase in quality of life.
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The slope of the labor demand curve may be identified from an exogenous change in quality of

life. According to our calibration, the elasticity of labor demand is large.

∂N̂

∂ŵ
=
∂N̂/∂Q̂

∂ŵ/∂Q̂
≈ 8.261

−0.359
≈ −23.01

To our knowledge, the closest empirical analog to this elasticity comes the immigration literature,

which regularly studies how relative wages vary with relative labor supply. A common empiri-

cal strategy emphasizes that existing immigrant enclaves are attractive to new immigrants from

similar source countries (e.g., Card 2001). Cross-sectional variation in quality of life comes from

historic immigration patterns. In general, this literature finds wages at the city level to be fairly

unresponsive to increases in labor supply, consistent with the large elasticity above.

The model also highlights an atypical supply and demand increase that could be brought forth

through higher housing productivity. In this case, firms may demand more labor to produce more

home-goods, while the supply of workers increases because the cost-of-living falls. According to

our calibration, the net result is an increase in labor supply and a modest decrease in wages.

∂N̂

∂ŵ
=
∂N̂/∂ÂY

∂ŵ/∂ÂY
≈ 2.879

−0.117
≈ −24.61.

We are not aware of any estimates of this elasticity, although works by Saks (2008) and others has

highlighted the importance of housing supply in accommodating worker inflows.

4.2 Local Housing Supply and Demand

As labor and housing markets both clear in the neoclassical model, the population is closely tied

to the amount of housing, which we interpret as home goods. The difference between population
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and housing is due to substitution and income effects in consumption, calibrated as

Ŷ j = N̂ j − 0.43p̂j − Q̂j (34)

= 6.17Q̂j + 2.38sxÂ
j
X + 8.21syÂ

j
Y . (35)

Relative to population, housing responds less strongly to quality of life and trade-productivity

differences and more strongly to home-productivity differences. Most empirical studies ignore

changes in per-capita housing consumption and instead equate housing with population.

It is worth repeating that the source of the shift in housing supply is important. Housing

supply responds over twice as much to an increase of quality of life as to an increase in trade-

productivity.22

∂Ŷ

∂p̂
=
∂Ŷ /∂ÂX

∂p̂/∂ÂX
≈ 1.524

1.608
≈ 0.95

∂Ŷ

∂p̂
=
∂Ŷ /∂Q̂

∂p̂/∂Q̂
≈ 6.175

2.544
≈ 2.43.

These calibrated values are within the range seen in Saiz (2010) of 0.80 to 5.45 for different cities.

His empirical strategy uses shifts in industrial composition, immigrant enclaves, and sunshine as

sources of exogenous variation to identify these elasticities. Thus, he appears to estimate a hybrid

of the two elasticities above; places deemed to have a greater housing supply elasticity may have

instead experienced a greater quality of life change than trade-productivity change. Part of the

observed variation also stems from cross-metro differences in σY and εL,r, which we ignore.

Our log-linearization predicts that housing prices will not be affected by increasing housing

supply through the production elasticity σY , since there is no first-order dependence.23 An increase

22When land supply is fixed, the total home-good differential represents a housing density differential.
23See equation (19).
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in home-productivity does lower prices, but by much less than it increases the amount of housing,

∂Ŷ

∂p̂
=
∂Ŷ /∂ÂY

∂p̂/∂ÂY
≈ 2.953

−0.172
≈ −17.17.

Thus, with homogenous preferences and mobile factors, measures that increase housing produc-

tivity, such as reducing regulations, will be seen much more in quantities than prices.

The frictionless neoclassical model generates own-price demand elasticities which are roughly

an order of magnitude larger than supply elasticities.

5 Empirical Relationship between Density, Prices, and Ameni-

ties

5.1 Data

We define cities at the Metropolitan Statistical Area (MSA) level using 1999 Office of Manage-

ment and Budget (OMB) definitions of consolidated MSAs (e.g., San Francisco is combined with

Oakland and San Jose), of which there are 276. We use the 5-percent sample of 2000 United States

Census from Ruggles et al. (2004) to calculate wage and housing price differentials, controlling for

relevant covariates.24 Population density also comes from the 2000 Census. Density is calculated

at the census tract level, then averaged according to population to form an MSA density value. All

of our empirical results below use MSA population weights.

5.2 Population Density and Calibrated Substitution Elasticities

We first consider how well the model predicts population densities using price information and

examine the accuracy of our calibrated substitution elasticities. Following the discussion above,

we assume ÂjY = 0 and use ŵj and p̂j to identify Q̂j and ÂjX from equations (1*) and (25). Given

24See Appendix D for more details on the calculation of wage and price differentials.
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these amenity estimates and our calibrated elasticities, we predict N̂ j for each city and compare

this with actual population density differences.

As shown in Table 4, the variance in log population density differences across MSAs is 0.770.

The variance predicted by the model is 0.359, which means that a remarkable 47-percent of density

variation is explained by the neoclassical model, based on a calibration pre-set in Albouy (2009a).25

To determine whether we could explain more variation by choosing different elasticities of sub-

stitution, we consider how well different combinations of σD, σX , σY predict densities. In Figure

2, we graph the variance of the prediction error as a function of the elasticities of substitution.

If, for simplicity’s sake, we restrict σD = σX = σY = σ, as in equation (33), prediction error

is minimized at roughly σ = 0.667, our initial specification. Other values increase prediction er-

ror, including the Cobb-Douglas case σ = 1. The next curve fixes σX = 0.667, which reduces

the prediction error, but only by a small amount. Also fixing σD = 0.667, as in the last curve,

reduces prediction error by roughly the same amount. The greatest reduction comes from setting

σY = 0.667, further emphasizing its importance. If σY is set to zero, the model reduces prediction

error by only half as much relative to when σY = 0.667. The takeaway from this exercise is that

our the pre-set calibration does quite well relative to other potential calibrations.26

5.3 Trade and Home-Productivity Estimates

We now exploit density information to identify trade and home-productivity separately, using the

method proposed in Section 2.6. Figure 3 displays estimated measures of inferred cost and excess

density for different MSAs from the left-hand sides of equations (25) and (26). The figure in-

25It is worth repeating that the values here were taken from the literature, and were not estimated from population
density.

26An unrestricted regression of log density on wages and housing costs naturally produces a higher R-squared of
0.72 > 0.47, with N̂ j = 4.40ŵj + 0.90p̂j + ej = 0.63Q̂j + 6.26ÂjX + ej . Relative to the calibration, this produces
an estimate of εN,Q that is far too low and εN,AX

that is far too high. The two estimated reduced-form elasticities
are insufficient for identifying the three elasticity parameters. Furthermore, since the estimated coefficient on Q̂j of
0.63 is less than the constant 0.77 in equation (29), then at least one of the substitution elasticities would have to be
negative, which is untenable. The calibrated model suggests that ej , which includes ÂjY , is positively correlated with
AjX or negatively correlated with Q̂j . If we instead constrain the estimates to fit the restriction σD = σX = σY = σ,
as in equation (33), then we obtain N̂ j = 8.57Q̂j + 2.30ÂjX + ej implying a σ = 0.680, quite close to the calibration.
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cludes iso-productivity lines for both tradable and non-tradable sectors. To understand how trade-

productivity is inferred, consider the downward-sloping iso-trade-productivity line, along which

cities have the average trade-productivity. Above and to the right of this line, cities have higher

excess density or inferred costs, indicating above-average trade-productivity. Above and to the left

of the upward-sloping iso-home-productivity line, cities have high excess density or low inferred

costs, indicating high home-productivity. For example, San Francisco has high inferred costs and

average excess density, or high trade-productivity and below-average home-productivity.

Figure 4 uses the same data as Figure 3, but graphs trade and home-productivity directly.27

Overall, New York is the most productive city. Philadelphia and Chicago have high levels of trade

and home-productivity as well, while Santa Fe and Myrtle Beach are unproductive in both sec-

tors. San Antonio has low trade-productivity and high home-productivity. Figure 4 also includes

isoclines for excess density and inferred costs, which correspond to the axes in Figure 3. Holding

quality of life constant, trade-productivity and home-productivity must move in opposite directions

to keep population density constant. Holding quality of life constant, home-productivity must rise

faster than trade-productivity to keep inferred costs constant.

Two important points should be made about about the home-productivity estimates. First, they

strongly reflect the residual measure of population density.28 Second, the measure is highly in-

dicative of the accumulated housing stock of a city. Older cities, like New York, Chicago, and

Philadelphia, have high home-productivity. We can explain part of this by noting that these cities

have been built up over the past century, when building and land use regulations were less restric-

tive.29

27Figure A.2 displays the distribution of quality of life, trade-productivity, and home-productivity. Home-
productivity displays the greatest variance, though this could be due to the estimation procedure, as described below.

28Recall that we can estimate Q̂j perfectly and ÂjX quite well with only wage and housing price data.
29Some of these findings appear to conflict with recent work by Albouy and Ehrlich (2012), who use data on

land values to infer productivity in the housing sector, which comprises most of the non-tradable sector. While the
two approaches largely agree on which large areas have high home-productivity, the land values approach suggests
that larger, denser cities generally have lower, rather than higher housing productivity. This apparent contradiction
actually highlights what the two methodologies infer differently. Productivity measures based on land values provide
a better insight into the marginal cost of increasing the housing supply, by essentially inferring the replacement cost.
Productivity measures based on density are more strongly related to the average cost of the housing supply, thereby
reflecting the whole history of building in a city. The distinction matters particularly for cities with older housing built
on the easiest terrain in the decades prior to the diffusion of residential land-use regulations when factor prices were
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The estimation procedure outlined above also refines estimates of trade-productivity over those

provided in Albouy (2009a), which assumes that home-productivity is constant. Table 6 con-

tains estimates of population density, wages, housing costs, land values, and amenity differentials

for a selected sample of metropolitan areas. Table A.4 contains a full list of metropolitan and

non-metropolitan areas; the table also compares the trade-productivity estimates from the two ap-

proaches.

5.4 Determinants of Population Density

We now explore the determinants of household location decisions using straightforward variance

decomposition, which we present in Tables 4 and 5. The first relies on the simpler estimates of Q̂j

and ÂjX based only on price data, while Table 5 uses density information to identify ÂjY , provid-

ing a fuller decomposition. In Table 4, quality of life explains nearly half of the total variance in

predicted population density, even though the variance of trade-productivity is an order of magni-

tude larger than the variance of quality of life (not reported, but see Figure A.2). Relatively small

differences in quality of life explain a large amount of the population distribution. In other words,

the constant home-productivity frictionless neoclassical model predicts that “jobs follow people”

much more than “people follow jobs.”

In Table 5 Panel A, we decompose the variance of observed (which now equals predicted)

population density. Quality of life explains more than twice as much population density compared

to trade-productivity. The relatively large fraction of variance explained by home-productivity

suggests that there remains some portion of household location decisions which our simple model

does not explain. Nevertheless, quality of life and trade-productivity explain nearly half of the total

variation in population density.

Table 5 Panel B explores how population density would change if federal taxes were made geo-

graphically neutral.30 Trade-productivity now explains a larger fraction of population density than

relatively low.
30In particular, we use our amenity estimates and calibrated model to predict prices and quantities (including popu-

lation density) for each city in the absence of location-distorting federal income taxes. Because we estimate amenities
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does quality of life. Federal taxes introduce a wedge between trade-productivity and the benefits

that households receive by locating in productive cities. Eliminating the geographic distortion in

the tax code would allow households to benefit more from trade-productive cities, which would

encourage migration to those places.

When we simultaneously account for agglomeration and congestion forces, we find that these

increase the importance of natural advantages in quality of life and lower the importance of those

in trade-productivity (Table A.2).

6 Conclusion

Although Rosen and Roback designed the neoclassical model to explain price differences across

metropolitan areas, it provides a surprisingly accurate general-equilibrium basis for estimates of

elasticities of labor and housing demand and supply. Using only two simple measures of wages

and housing costs, the model explains half of the variation in population density using a pre-set

calibration. Within the neoclassical framework, the other half may be explained by differences in

home-good productivity or heterogeneity in structural parameters, like the elasticity of substitution

in home-good production. Additional variation in population density might be explained by exten-

sions such as heterogeneous households, non-neutral productivity differences, or non-homothetic

preferences. Beyond the neoclassical framework, issues such as historical path dependence, flexi-

ble preference heterogeneity, and mobility frictions might also account for the remaining variation.

Even small differences in quality of life seem to explain large differences in population den-

sity, especially when we account for agglomeration economies. The calibrated model suggests that

funds spent to attract households may be more effective at boosting metropolitan population than

funds spent to attract firms. Federal taxes explain much of the stronger appeal offered by quality

of life. The results also imply that available land and flexible housing production are important in

accommodating high population and density levels. In other words, differences in population lev-

using observed density, wage, and housing price data, we cannot estimate amenities in the absence of distortionary
federal taxes.
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els across cities unaccounted for by wages and prices may be due to land and housing availability,

rather than preference heterogeneity or dynamic adjustment costs. An important step in our un-

derstanding of household location decisions is the development of models capable of consistently

explaining both levels and changes in population, while also accounting for housing availability

and general-equilibrium adjustments.
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Table 1: Calibrated Parameters

Parameter Name Notation Calibrated Value
Cost and Expenditure Shares

Home-good expenditure share sy 0.36
Income share to land sR 0.10

Income share to labor sw 0.75
Traded-good cost share of land θL 0.025

Traded-good cost share of labor θN 0.825
Home-good cost share of land φL 0.233

Home-good cost share of labor φN 0.617
Share of land used in traded good λL 0.17

Share of labor used in traded good λN 0.70
Tax Parameters

Average marginal tax rate τ 0.361
Average deduction level δ 0.291

Structural Elasticities
Elasticity of substitution in consumption σD 0.667

Elasticity of traded-good production σX 0.667
Elasticity of home-good production σY 0.667

Elasticity of land supply εL,r 0.0

Table 2: Sensitivity Analysis

εN,Q εN,AX
εN,AY

σD 1.258 0.795 -0.085
σX 1.954 0.467 0.636
σY 8.015 2.052 2.608
εL,r 11.853 4.009 3.857

Constant 0.773 0.000 0.773
Table 2 describes the effect on reduced-
form elasticities of increasing each struc-
tural elasticity by one, e.g., εN,Q =
0.773+1.258σD+1.954σX+8.015σY +
11.853εL,r.
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Table 3: Base Elasticities

A: With Taxes B: Neutral Taxes
Q̂ ÂX ÂY Q̂ ÂX ÂY

r̂ 11.853 4.009 3.857 10.001 6.400 3.600
ŵ -0.359 1.091 -0.117 -0.303 1.018 -0.109
p̂ 2.544 1.608 -0.172 2.146 2.121 -0.227
x̂ -0.389 0.386 -0.041 -0.654 0.728 -0.078
ŷ -2.086 -0.686 0.074 -1.916 -0.905 0.097
N̂ 8.261 2.210 2.879 7.091 3.721 2.717
L̂ 0.000 0.000 0.000 0.000 0.000 0.000
K̂ 8.008 2.907 2.774 6.864 4.385 2.616
X̂ 8.085 3.414 2.926 7.008 4.805 2.777
Ŷ 6.175 1.524 2.953 5.175 2.816 2.815
N̂X 8.324 2.354 3.004 7.210 3.792 2.850
N̂Y 8.112 1.869 2.583 6.809 3.551 2.403
L̂X 0.178 0.407 0.354 0.337 0.203 0.376
L̂Y -0.034 -0.078 -0.067 -0.064 -0.039 -0.071
K̂X 8.045 3.081 2.926 7.008 4.471 2.777
K̂Y 7.872 2.596 2.505 6.607 4.230 2.330

Each value in Table 3 represents the partial effect that a one-percent
increase in each amenity has on each price or quantity, e.g., N̂ j =
8.261Q̂j + 2.210ÂjX + 2.879ÂjY . The values in panel A are derived
using the parameters in Table 1. The values in panel B are derived using
geographically neutral taxes.

Table 4: Variance Decomposition, Two Amenity

Fraction of V ar(N̂) explained by
V ar(N̂) V ar(εN,QQ̂) V ar(εN,AX

ÂX) Cov(εN,QQ̂, εN,AX
ÂX)

0.359 0.498 0.184 0.318
Table 4 presents the variance decomposition of predicted population density us-
ing data on wages and house prices only. See text for more details.

34



Table 5: Variance Decomposition, Three Amenity

A: Observed Population Density and Prices. V ar(N̂) = 0.770

Fraction of V ar(N̂) explained by
Cov(εN,QQ̂, ·) Cov(εN,AX

ÂX , ·) Cov(εN,AY
ÂY , ·)

Cov(·, εN,QQ̂) 0.232 · ·
Cov(·, εN,AX

ÂX) 0.137 0.102 ·
Cov(·, εN,AY

ÂY ) -0.145 0.235 0.439
B: Counterfactual Density and Prices. V ar(N̂) = 1.005

Fraction of V ar(N̂) explained by
Cov(εN,QQ̂, ·) Cov(εN,AX

ÂX , ·) Cov(εN,AY
ÂY , ·)

Cov(·, εN,QQ̂) 0.131 · ·
Cov(·, εN,AX

ÂX) 0.151 0.221 ·
Cov(·, εN,AY

ÂY ) -0.090 0.287 0.300
Panel A presents the variance decomposition using data on population density, wages,
and house prices. Panel B presents the variance decomposition under geographically
neutral taxes and associated price and quantity predictions.
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Table 6: List of Selected Metropolitan Areas Ranked by Inferred Land Value

Name of Metropolitan Area N̂ j ŵj p̂j r̂j Q̂j ÂjX ÂjY
New York, Northern New Jersey, Long Island, NY-NJ-CT-PA 2.285 0.209 0.411 3.366 0.029 0.264 0.509
San Francisco-Oakland-San Jose, CA 1.209 0.256 0.813 2.000 0.138 0.269 -0.182
Los Angeles-Riverside-Orange County, CA 1.250 0.129 0.450 1.913 0.081 0.159 0.079
Chicago-Gary-Kenosha, IL-IN-WI 1.191 0.136 0.224 1.767 0.005 0.161 0.276
Salinas (Monterey-Carmel), CA 0.863 0.103 0.590 1.435 0.137 0.124 -0.189
San Diego, CA 0.872 0.058 0.479 1.403 0.123 0.085 -0.114
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD 0.958 0.114 0.052 1.393 -0.040 0.133 0.346
Miami-Fort Lauderdale, FL 0.964 0.001 0.126 1.352 0.041 0.035 0.191
Santa Barbara-Santa Maria-Lompoc, CA 0.713 0.068 0.662 1.255 0.176 0.090 -0.326
. . .
Goldsboro, NC -1.509 -0.183 -0.297 -2.226 -0.007 -0.213 -0.340
Johnson City-Kingsport-Bristol, TN-VA -1.485 -0.179 -0.363 -2.236 -0.028 -0.209 -0.273
Dothan, AL -1.533 -0.181 -0.404 -2.314 -0.040 -0.214 -0.253
Hickory-Morganton-Lenoir, NC -1.624 -0.127 -0.220 -2.356 -0.008 -0.168 -0.412
Ocala, FL -1.582 -0.170 -0.298 -2.363 -0.010 -0.205 -0.362
Florence, SC -1.606 -0.120 -0.341 -2.381 -0.049 -0.162 -0.292
Rocky Mount, NC -1.640 -0.111 -0.246 -2.384 -0.024 -0.155 -0.381
Anniston, AL -1.579 -0.183 -0.424 -2.385 -0.046 -0.216 -0.250
Texarkana, TX-Texarkana, AR -1.556 -0.185 -0.498 -2.388 -0.068 -0.219 -0.178
Jonesboro, AR -1.651 -0.240 -0.452 -2.533 -0.026 -0.269 -0.293

Table 6 includes the top and bottom ten metropolitan areas ranked by inferred land value (r̂j). The first three columns
(N̂ j, ŵj, p̂j) are estimated from Census data, while the last four columns come from the calibrated model. See text for
estimation procedure.
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Figure 1: Distribution, 2000
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Figure 2: Error in Fitting Pop. Density using Q̂ and ÂX Only
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Figure 3: Excess Density and Inferred Cost Estimates, 2000
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Figure 4: Trade- and Home-Productivity Estimates, 2000

Philadelphia

Chicago

New York

Miami

Los Angeles

San Diego

Monterey San Francisco

Houston
BakersfieldBloomingtonPittsburgh

Detroit
Dallas

El Paso

San Antonio

St. LouisMinneapolisColumbus

Hartford

Las Vegas

Washington Baltimore

Springfield
Tampa

New Orleans

Phoenix

Austin

Norfolk

Sacramento

Boston

Portland
AlbuquerqueTucson

Reno
Denver

Seattle

Santa Barbara

Honolulu

Kokomo

BeaumontDecatur
McAllen Syracuse

Cincinnati

Atlanta

Oklahoma City

Sioux Falls

Nashville

Yuma
Orlando

Fort PierceKilleen

Fort Myers
Fort Walton Beach

SarasotaFort Collins

Medford

Naples
Grand Junction

San Luis ObispoSanta Fe

Gadsden

Steubenville

Joplin

Ocala
Flagstaff

Great Falls

Myrtle Beach

Punta GordaJacksonville

WilmingtonMissoula

Cape Cod

AL

MS

KY

ND

OK

NV
SD

UT

FL

AK

AZ

MT

OR

VT

CO

HI

0.
83

0.
69

0.
56

0.
42

0.
28

0.
14

0.
00

0.
14

0.
28

0.
42

0.312 0.234 0.156 0.078 0.000 0.078 0.156 0.234
Trade Productivity

METRO DENSITY High Density Identical Inferred Cost, slope = 9.3320 

Medium Density Low Density Identical Excess Density, slope = 0.7676 

Very Low Density Non Metro Areas

Ho
m

e
Pr

od
uc

tiv
ity

See note to Figure 3.

39



Online Appendix - Not for Publication

A Comparison of Nonlinear and Linear Models
We employ a two-step simulation method to solve a nonlinear version of the model.31 We assume
that utility and production functions display constant elasticity of substitution,

U(x, y;Q) = Q(ηxx
α + (1− ηx)yα)1/α (A.1)

FX(LX , NX , KX ;AX) = AX(γLL
β + γNN

β + (1− γL − γN)Kβ)1/β (A.2)

FY (LY , NY , KY ;AY ) = AY (ρLL
χ + ρNN

χ + (1− ρL − ρN)Kχ)1/χ (A.3)

where

α ≡ σD − 1

σD

β ≡ σX − 1

σX

χ ≡ σY − 1

σY

Throughout, we assume that σD = σX = σY = 0.667. We first consider a “large” city with amenity
values normalized so that Q = AX = AY = 1. We fix land supply, population, and the rental price
of capital ῑ. We then solve a nonlinear system of fifteen equations, corresponding to equations (1)-
(14) and (16), for fifteen unknown variables: ū, w, r, p, x, y,X, Y,NX , NY , LX , LY , KX , KY , K.
We simultaneously choose values of ηx, γL, γN , ρL, and ρN so that the model matches values of
sy, θL, θN , φL, and φN in Table 1. The large city calibration also yields values for R, I, and T .32

We then consider a “small” city, which we endow with land equal to one one-millionth of
the large city’s land.33 The population for the small city is endogenous, and the reference util-
ity level ū is exogenous. The average amenity values are Q = AX = AY = 1. While holding
two amenities fixed at the average, we solve the model after setting the third amenity to be some-
where between 0.8 and 1.2. We solve the same system as for the large city, but now solve for
w, r, p, x, y,X, Y,NX , NY , LX , LY , KX , KY , N,K.

We compare the nonlinear model to a one-city linear model. We use parameter values from
Table 1, but set the marginal tax rate τ = 0 and deduction level δ = 0. The average amenity
differentials are Q̂ = ÂX = ÂY = 0. As with the nonlinear model, we vary a single amenity while
holding the other amenities at their average value. Given a choice of amenity differentials Q̂, ÂX ,
and ÂY , equations (17), (18), and (19) determine prices r̂, ŵ, and p̂. Equations (20) and (21) next
determine per-capita consumption quantities x̂ and ŷ. We express equations (6*)-(16*) in matrix
form as

31Rappaport (2008a, 2008b) follows a similar procedure.
32To simulate the model, we solve a mathematical program with equilibrium constraints, as described in Su and

Judd (2012). MATLAB code for the simulation is available at WEBSITE.
33We do this to avoid any feedback effects from the small city to the large one. In particular, this permits use of

values of ū, ῑ, R, I, and T from the large city calibration, which simplifies the procedure considerably.
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

1 0 0 −1 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 1 −1 0 0
λN 0 0 0 1− λN 0 0 0 −1 0
0 λL 0 0 0 1− λL 0 0 0 0
0 0 λK 0 0 0 1− λK 0 0 −1
0 0 0 0 0 0 0 1 −1 0





N̂X
L̂X
K̂X

X̂

N̂Y
L̂Y
K̂Y

Ŷ

N̂

K̂


=



−ÂX + θLσX(r̂ − ŵ)− θKσXŵ
−ÂX + θNσX(ŵ − r̂)− θKσX r̂
−ÂX + θLσX r̂ + θNσXŵ

−ÂY + φLσY (r̂ − ŵ)− φKσY ŵ
−ÂY + φNσY (ŵ − r̂)− φKσY r̂
−ÂY + φLσY r̂ + φNσY ŵ

0
εL,r r̂

0
ŷ


We can simply invert the above matrix system to solve for aggregate production quantity differen-
tials, including population.

Figure A.1 presents results of both models in terms of reduced-form population elasticities with
respect to each amenity.34 The linear model does quite well in approximating population responses
to trade- and home-productivity. The linear model approximates the quality of life reduced-form
elasticity less precisely. As quality of life increases, population increases at an increasing rate,
while population decreases at a decreasing rate as quality of life falls. Similar, but weaker, patterns
exist for trade- and home-productivity.

B Additional Theoretical Details

B.1 Reduced-Form Elasticities
The analytic solutions for reduced-form elasticities of population with respect to amenities are
given below.

εN,Q =

[
λN − λL
λN

]
+ σD

[
sx(λN − λL)2

syλN(λN − λLτ)

]
+ σX

[
λ2
L

sw(λN − λLτ)
+

λLλN
sR(λN − λLτ)

]
+ σY

[
λ2
L(1− λN)

swλN(λN − λLτ)
+

λN(1− λL)

sR(λN − λLτ)
− (λN − λL)2

syλN(λN − λLτ)

]
+ εL,r

[
λN

sR(λN − λLτ)

]

εN,AX
= σD

[
s2
x(λN − λL)(1− λL)(1− τ)

syλN(λN − λLτ)

]
+ σX

[
sxλL(λN − τ)

sR(λN − λLτ)
− sxλL(1− λL)

sw(λN − λLτ)

]
+

σY

[
sx(1− λL)(λN − τ)

sR(λN − λLτ)
− sxλL(1− λL)(1− λN)

swλN(λN − λLτ)
− sx(1− λL)(λN − λL)(1− τ)

syλN(λN − λLτ)

]
+ εL,r

[
sx(λN − τ)

sR(λN − λLτ)

]
34We normalize the elasticities in Figure A.1 for trade- and home-productivity by sx and sy .
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εN,AY
=

[
λN − λL
λN

]
+ σD

[
−sxλL(λN − λL)(1− τ)

λN(λN − λLτ)

]
+ σX

[
syλNλL

sR(λN − λLτ)
+

syλ
2
L

sw(λN − λLτ)

]
+ σY

[
−
(
λN − λL
λN

)
+

syλ
2
L(1− λN)

swλN(λN − λLτ)
+
syλN(1− λL)

sR(λN − λLτ)
+
λL(λN − λL)(1− τ)

λN(λN − λLτ)

]
+ εL,r

[
syλN

sR(λN − λLτ)

]

B.2 Special Case: Fixed Per-Capita Housing Consumption
Consider the case in which per-capita housing consumption is fixed, ŷj = 0. The model then yields
N̂ j = ε̃N,QQ̂

j + ε̃N,AX
ÂjX + ε̃N,AY

ÂjY , where the coefficients are defined as:

ε̃N,Q = σX

[
λ2
L

sw(λN − λLτ)
+

λLλN
sR(λN − λLτ)

]
+ εL,r

[
λN

sR(λN − λLτ)

]
+ σY

[
λ2
L(1− λN)

swλN(λN − λLτ)
+

λN(1− λL)

sR(λN − λLτ)
− (λN − λL)2

syλN(λN − λLτ)

]
ε̃N,AX

= σX

[
sxλL(λN − τ)

sR(λN − λLτ)
− sxλL(1− λL)

sw(λN − λLτ)

]
+ εL,r

[
sx(λN − τ)

sR(λN − λLτ)

]
+ σY

[
sx(1− λL)(λN − τ)

sR(λN − λLτ)
− sxλL(1− λL)(1− λN)

swλN(λN − λLτ)
− sx(1− λL)(λN − λL)(1− τ)

syλN(λN − λLτ)

]
ε̃N,AY

= σX

[
syλNλL

sR(λN − λLτ)
+

syλ
2
L

sw(λN − λLτ)

]
+ εL,r

[
syλN

sR(λN − λLτ)

]
+ σY

[
syλ

2
L(1− λN)

swλN(λN − λLτ)
+
syλN(1− λL)

sR(λN − λLτ)
+
λL(λn − λL)(1− τ)

λN(λN − λLτ)

]
These reduced-form elasticities no longer depend on the elasticity of substitution in consumption
σD. In addition, above-average quality of life and/or home-productivity no longer lead to higher
population independently of the substitution elasticities, i.e., the term (λN − λL)/λN drops out of
the elasticities.

B.3 Identification of Elasticity of Substitution in Non-Tradable Production
Consider setting home-productivity constant across cites, ÂjY = 0, and using population density to
estimate the elasticity of non-tradable good production σjY for each city. In particular, we have

N̂ j = εN,QQ̂
j + εN,AX

ÂjX , (A.4)

where εN,Q and εN,AX
are defined in Section B.1, but now depend on a city-specific σjY . When

home-productivity is constant, we can identify trade-productivity using information on wages and
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housing prices,

ÂjX =
θL
φL
p̂j +

(
θN − φN

θL
φL

)
ŵj

and so equation (A.4) is a single equation in one unknown variable, σjY . We do not pursue this
approach further, but note that it yields city-specific estimates of the elasticity of substitution in
non-tradable production, under the restrictive assumption that home-productivity does not vary
across cities. Without accurate data on land values, which is necessary to jointly identify trade
and home-productivity, the model does not permit simultaneous identification of ÂjY and σjY using
population data alone. Data on capital differentials K̂j would permit identification of a city-specific
elasticity of non-tradable production and both types of productivity, but we are not aware of reliable
data on capital stock differentials across cities.

B.4 Deduction
Tax deductions are applied to the consumption of home goods at the rate δ ∈ [0, 1], so that the tax
payment is given by τ(m− δpy). With the deduction, the mobility condition becomes

Q̂j = (1− δτ ′)syp̂j − (1− τ ′)swŵj

= syp̂
j − swŵj +

dτ j

m

where the tax differential is given by dτ j/m = τ ′(swŵ
j − δsypj). This differential can be solved

by noting

swŵ
j = swŵ

j
0 +

λL
λN

dτ j

m

syp̂
j = syp̂

j
0 −

(
1− λL

λN

)
dτ j

m

and substituting them into the tax differential formula, and solving recursively,

dτ j

m
= τ ′swŵ

j
0 − δτ ′syp̂

j
0 + τ ′

[
δ + (1− δ) λL

λN

]
= τ ′

swŵ
j
0 − δsyp̂

j
0

1− τ ′ [δ + (1− δ)λL/λN ]

We can then solve for the tax differential in terms of amenities:

dτ j

m
= τ ′

1

1− τ ′ [δ + (1− δ)λL/λN ]

[
(1− δ)

(
1− λL
λN

sxÂ
j
X −

λL
λN

syA
j
Y

)
− (1− δ)λL + δλN

λN
Q̂j

]
This equation demonstrates that the deduction reduces the dependence of taxes on productivity and
increases the implicit subsidy for quality-of-life.
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B.5 State Taxes
The tax differential with state taxes is computed by including an additional component based on
wages and prices relative to the state average, as if state tax revenues are redistributed lump-sum
to households within the state. This produces the augmented formula

dτ j

m
= τ ′

(
swŵ

j − δτ ′syp̂j
)

+ τ ′S[sw(ŵj − ŵS)− δSsy(p̂j − p̂S)] (A.5)

where τ ′S and δS are are marginal tax and deduction rates at the state-level, net of federal deduc-
tions, and ŵS and p̂S are the differentials for state S as a whole relative to the entire country.

C Additional Calibration Details

C.1 Cost and Expenditure Shares
We calibrate the model using the data described below and national-level parameters. Starting with
income shares, Krueger (1999) argues that sw is close to 75 percent. Poterba (1998) estimates that
the share of income from corporate capital is 12 percent, so sI should be higher and is taken as 15
percent. This leaves 10 percent for sR, which is roughly consistent with estimates in Keiper et al.
(1961) and Case (2007).35

Turning to expenditure shares, Albouy (2008), Moretti (2008), and Shapiro (2006) find that
housing costs approximate non-housing cost differences across cities. The cost-of-living dif-
ferential is syp̂j , where p̂j equals the housing-cost differential and sy equals the expenditure
share on housing plus an additional term which captures how a one percent increase in hous-
ing costs predicts a b = 0.26 percent increase in non-housing costs.36 In the Consumer Ex-
penditure Survey (CEX), the share of income spent on shelter and utilities, shous, is 0.22, while
the share of income spent on other goods, soth, is 0.56, leaving 0.22 spent on taxes or saved
(Bureau of Labor Statistics 2002).37 Thus, our coefficient on the housing cost differential is
sy = shous + sothb = 0.22 + 0.56× 0.26 = 36 percent. This leaves sx at 64 percent.

We choose the cost shares to be consistent with the expenditure and income shares above. θL
appears small: Beeson and Eberts (1986) use a value of 0.027, while Rappaport (2008a, 2008b)
uses a value of 0.016. Valentinyi and Herrendorff (2008) estimate the land share of tradables at
4 percent, although their definition of tradables differs from the one here. We use a value of 2.5
percent for θL here. Following Carliner (2003) and Case (2007), the cost-share of land in home-
goods, φL, is taken at 23.3 percent; this is slightly above values from McDonald (1981), Roback
(1982), and Thorsnes (1997) to account for the increase in land cost shares over time described
by Davis and Palumbo (2007). Together the cost and expenditure shares imply λL is 17 percent,
which appears reasonable since the remaining 83 percent of land for home goods includes all
residential land and much commercial land; the cost and expenditure shares also agree with sR at

35The values Keiper reports were at a historical low. Keiper et al. (1961) find that total land value was found to be
about 1.1 times GDP. A rate of return of 9 percent would justify using sR = 0.10. Case (2007), ignoring agriculture,
estimates the value of land to be $5.6 trillion in 2000 when personal income was $8.35 trillion.

36See Albouy (2008) for details.
37Utility costs account for one fifth of shous, which means that without them this parameter would be roughly 0.18.
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10 percent.38 Finally, we choose the cost shares of labor and capital in both production sectors. As
separate information on φK and θK does not exist, we set both cost shares of capital at 15 percent
to be consistent with sI . Accounting identities then determine that θN is 82.5 percent, φN is 62
percent, and λN is 70.4 percent.

The federal tax rate, when combined with relevant variation in wages with state tax rates,
produces an approximate marginal tax rate, τ , of 36.1 percent. Details on this tax rate, as well as
housing deductions, are discussed in Appendix C.2.

C.2 Calibration of Tax Parameters
The federal marginal tax rate on wage income is determined by adding together federal marginal
income tax rate and the effective marginal payroll tax rate. TAXSIM gives an average marginal
federal income tax rate of 25.1 percent in 2000. In 2000, Social Security (OASDI) and Medicare
(HI) tax rates were 12.4 and 2.9 percent on employer and employee combined. Estimates from
Boskin et al. (1987, Table 4) show that the marginal benefit from future returns from OASDI
taxes is fairly low, generally no more than 50 percent, although only 85 percent of wage earnings
are subject to the OASDI cap. HI taxes emulate a pure tax (Congressional Budget Office 2005).
These facts suggest adding 37.5 percent of the Social Security tax and all of the Medicare tax to
the federal income tax rate, adding 8.2 percent. The employer half of the payroll tax (4.1 percent)
has to be added to observed wage levels to produce gross wage levels. Overall, this puts an overall
federal tax rate, τ ′ , of 33.3 percent tax rate on gross wages, although only a 29.2 percent rate on
observed wages.

Determining the federal deduction level requires taking into account the fact that many house-
holds do not itemize deductions. According to the Statistics on Income, although only 33 percent
of tax returns itemize, they account for 67 percent of reported Adjusted Gross Income (AGI). Since
the income-weighted share is what matters, 67 percent is multiplied by the effective tax reduction
given in TAXSIM, in 2000 of 21.6 percent. Thus, on average these deductions reduce the effective
price of eligible goods by 14.5 percent. Since eligible goods only include housing, this deduction
applies to only 59 percent of home goods. Multiplying 14.5 percent times 59 percent gives an ef-
fective price reduction of 8.6 percent for home goods. Divided by a federal tax rate of 33.3 percent,
this produces a federal deduction level of 25.7 percent.

State income tax rates from 2000 are taken from TAXSIM, which, per dollar, fall at an average
marginal rate of 4.5 percent. State sales tax data in 2000 are taken from the Tax Policy Center,
originally supplied by the Federation of Tax Administrators. The average state sales tax rate is 5.2
percent. Sales tax rates are reduced by 10 percent to accommodate untaxed goods and services
other than food or housing (Feenberg et al. 1997), and by another 8 percent in states that exempt
food. Overall state taxes raise the marginal tax rate on wage differences within state by an average
of 5.9 percentage points, from zero points in Alaska to 8.8 points in Minnesota.

State-level deductions for housing expenditures, explicit in income taxes, and implicit in sales

38These proportions are roughly consistent with other studies. In the base calibration of the model, 51 percent of
land is devoted to actual housing, 32 percent is for non-housing home goods, and 17 percent is for traded goods,
including those purchased by the federal government. Keiper et al. (1961) find that about 52.5 of land value is in
residential uses, a 22.9 percent in industry, 20.9 percent in agriculture. Case (2007), ignoring agriculture, finds that in
2000 residential real estate accounted for 76.6 percent of land value, while commercial real estate accounted for the
remaining 23.4 percent.
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taxes, should also be included. At the state level, deductions for income taxes are calculated in an
equivalent way using TAXSIM data. Furthermore, all housing expenditures are deducted from the
sales tax. Overall this produces an average effective deduction level of δ = 0.291.

D Data and Estimation
We use United States Census data from the 2000 Integrated Public-Use Microdata Series (IPUMS),
from Ruggles et al. (2004), to calculate wage and housing price differentials. The wage differ-
entials are calculated for workers ages 25 to 55, who report working at least 30 hours a week, 26
weeks a year. The MSA assigned to a worker is determined by their place of residence, rather than
their place of work. The wage differential of an MSA is found by regressing log hourly wages
on individual covariates and indicators for which MSA a worker lives in, using the coefficients on
these MSA indicators. The covariates consist of

• 12 indicators of educational attainment;

• a quartic in potential experience, and potential experience interacted with years of education;

• 9 indicators of industry at the one-digit level (1950 classification);

• 9 indicators of employment at the one-digit level (1950 classification);

• 4 indicators of marital status (married, divorced, widowed, separated);

• an indicator for veteran status, and veteran status interacted with age;

• 5 indicators of minority status (Black, Hispanic, Asian, Native American, and other);

• an indicator of immigrant status, years since immigration, and immigrant status interacted
with black, Hispanic, Asian, and other;

• 2 indicators for English proficiency (none or poor).

All covariates are interacted with gender.
This regression is first run using census-person weights. From the regressions a predicted

wage is calculated using individual characteristics alone, controlling for MSA, to form a new
weight equal to the predicted wage times the census-person weight. These new income-adjusted
weights are needed since workers need to be weighted by their income share. The new weights
are then used in a second regression, which is used to calculate the city-wage differentials from
the MSA indicator variables. In practice, this weighting procedure has only a small effect on the
estimated wage differentials.

Housing price differentials are calculated using the logarithm reported gross rents and housing
values. Only housing units moved into within the last 10 years are included in the sample to ensure
that the price data are fairly accurate. The differential housing price of an MSA is calculated in
a manner similar to wages, except using a regression of the actual or imputed rent on a set of
covariates at the unit level. The covariates for the adjusted differential are
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• 9 indicators of building size;

• 9 indicators for the number of rooms, 5 indicators for the number of bedrooms, number
of rooms interacted with number of bedrooms, and the number of household members per
room;

• 2 indicators for lot size;

• 7 indicators for when the building was built;

• 2 indicators for complete plumbing and kitchen facilities;

• an indicator for commercial use;

• an indicator for condominium status (owned units only).

A regression of housing values on housing characteristics and MSA indicator variables is first run
using only owner-occupied units, weighting by census-housing weights. A new value-adjusted
weight is calculated by multiplying the census-housing weights by the predicted value from this
first regression using housing characteristics alone, controlling for MSA. A second regression is
run using these new weights for all units, rented and owner-occupied, on the housing characteristics
fully interacted with tenure, along with the MSA indicators, which are not interacted. The house-
price differentials are taken from the MSA indicator variables in this second regression. As with
the wage differentials, this adjusted weighting method has only a small impact on the measured
price differentials.

References for Online Appendix
Beeson, Patricia E. and Randall W. Eberts (1989) “Identifying Productivity and Amenity Effects
in Interurban Wage Differentials.” The Review of Economics and Statistics, 71, pp. 443-452.

Carliner, Michael (2003) “New Home Cost Components” Housing Economics, 51, pp. 7-11.

Case, Karl E. (2007). “The Value of Land in the United States: 1975–2005.” in Ingram Dale, Gre-
gory K., Hong, Yu-Hung (Eds.), Proceedings of the 2006 Land Policy Conference: Land Policies
and Their Outcomes. Cambridge, MA: Lincoln Institute of Land Policy Press.

Feenberg, Daniel and Elisabeth Coutts (1993), “An Introduction to the TAXSIM Model.” Journal
of Policy Analysis and Management, 12, pp. 189-194.

Krueger, Alan B. (1999), “Measuring Labor’s Share.” American Economic Review, 89, pp. 45-51.

McDonald, J.F. (1981) “Capital-Land Substitution in Urban Housing: A Survey of Empirical Esti-
mates.” Journal of Urban Economics, 9, pp. 190-211.

Poterba, James M. (1998) “The Rate of Return to Corporate Capital and Factor Shares: New
Estimates using Revised National Income Accounts and Capital Stock Data,” Carnegie-Rochester
Conference Series on Public Policy, 48, pp. 211-246.

viii



Shapiro, Jesse M. (2006) “Smart Cities: Quality of Life, Productivity, and the Growth Effects of
Human Capital.” The Review of Economics and Statistics, 88, pp. 324-335.

Su, Che-Lin and Kenneth L. Judd. (2012). “Constrained Optimization Approaches to Estimation
of Structural Models.” Econometrica, 80, pp. 2213-2230.

Thorsnes, Paul (1997) “Consistent Estimates of the Elasticity of Substitution between Land and
Non-Land Inputs in the Production of Housing.” Journal of Urban Economics, 42, pp. 98-108.
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Table A.1: Agglomeration and Congestion Elasticities

A: Agglomeration Elasticities B: Congestion Elasticities
I: With Taxes II: Neutral Taxes I: With Taxes II: Neutral Taxes

Q̂ ÂX0 ÂY Q̂ ÂX0 ÂY Q̂0 ÂX ÂY Q̂0 ÂX ÂY
r̂ 14.144 4.622 4.655 13.507 8.240 4.944 10.546 3.659 3.401 9.040 5.896 3.232
ŵ 0.264 1.257 0.100 0.255 1.311 0.105 -0.319 1.101 -0.103 -0.274 1.033 -0.098
p̂ 3.463 1.854 0.148 3.308 2.731 0.218 2.263 1.533 -0.270 1.940 2.013 -0.306
x̂ -0.168 0.445 0.035 -0.255 0.938 0.075 -0.346 0.397 -0.026 -0.591 0.761 -0.054
ŷ -2.478 -0.791 -0.063 -2.412 -1.166 -0.093 -1.856 -0.625 0.154 -1.732 -0.809 0.168
N̂ 9.524 2.548 3.320 9.130 4.791 3.499 7.350 1.967 2.562 6.409 3.363 2.456
L̂ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
K̂ 9.669 3.351 3.353 9.265 5.645 3.537 7.125 2.670 2.467 6.204 4.038 2.363
X̂ 10.036 3.936 3.606 9.640 6.186 3.786 7.193 3.176 2.615 6.334 4.451 2.519
Ŷ 7.046 1.757 3.256 6.717 3.625 3.406 5.494 1.342 2.716 4.677 2.554 2.624
N̂X 9.669 2.714 3.473 9.288 4.883 3.646 7.406 2.108 2.684 6.517 3.429 2.584
N̂Y 9.180 2.155 2.955 8.754 4.572 3.148 7.217 1.630 2.271 6.154 3.208 2.152
L̂X 0.411 0.469 0.435 0.448 0.261 0.418 0.159 0.402 0.347 0.305 0.185 0.363
L̂Y -0.078 -0.089 -0.083 -0.085 -0.050 -0.080 -0.030 -0.076 -0.066 -0.058 -0.035 -0.069
K̂X 9.845 3.552 3.540 9.457 5.757 3.716 7.193 2.843 2.615 6.334 4.118 2.519
K̂Y 9.356 2.993 3.022 8.924 5.446 3.218 7.004 2.364 2.202 5.971 3.897 2.086

Endogenous productivity: AjX = AjX0(N j)α, α = 0.06. See text for details.
Congestion costs: Qj = Qj0(N j)−γ , γ = 0.015. See text for details.
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Table A.2: Variance Decomposition, Three Amenity, With Feedback Effects

A: Observed Population Density and Prices. V ar(N̂) = 0.770

Fraction of V ar(N̂) explained by
Cov(εN,QQ̂, ·) Cov(εN,AX

ÂX , ·) Cov(εN,AY
ÂY , ·)

Cov(·, εN,QQ̂) 0.309 · ·
Cov(·, εN,AX

ÂX) 0.116 0.044 ·
Cov(·, εN,AY

ÂY ) -0.025 0.109 0.447
B: Counterfactual Density and Prices. V ar(N̂) = 0.825

Fraction of V ar(N̂) explained by
Cov(εN,QQ̂, ·) Cov(εN,AX

ÂX , ·) Cov(εN,AY
ÂY , ·)

Cov(·, εN,QQ̂) 0.213 · ·
Cov(·, εN,AX

ÂX) 0.157 0.116 ·
Cov(·, εN,AY

ÂY ) -0.019 0.161 0.372
Panel A presents the variance decomposition using data on population density, wages,
and house prices. Panel B presents the variance decomposition under geographically
neutral taxes.
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Table A.3: Relationship between Observed and Predicted Values

Q̂ ÂX ÂY r̂ x̂ ŷ L̂ K̂ X̂ Ŷ N̂X N̂Y K̂X K̂Y L̂X L̂Y

ŵ -0.478 0.837 0.730 0.485 0.478 0.478 0.000 0.618 1.117 0.468 0.171 -0.442 0.838 0.225 0.515 -0.098
(0.002) (0.001) (0.006) (0.026) (0.002) (0.002) (0.000) (0.017) (0.017) (0.020) (0.017) (0.018) (0.017) (0.018) (0.000) (0.000)

p̂ 0.324 0.007 -0.935 0.278 -0.084 -0.751 -0.000 0.030 -0.084 -0.741 -0.086 0.237 -0.086 0.237 -0.271 0.052
(0.001) (0.000) (0.002) (0.010) (0.001) (0.001) (0.000) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.000) (0.000)

N̂ 0.000 0.034 0.320 1.373 -0.000 -0.000 -0.000 0.989 1.055 0.998 1.044 0.892 1.044 0.892 0.128 -0.024
(0.000) (0.000) (0.001) (0.002) (0.000) (0.000) (0.000) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.000) (0.000)

Each column presents coefficients (standard errors) from an OLS regression of (unobserved) estimated amenity, price, or quantity on observed prices and population
density (ŵ, p̂, N̂ ).
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Table A.4: List of Metropolitan and Non-Metropolitan Areas Ranked by Inferred Land Value

Full Name of Metropolitan Area N̂ j Q̂j ÂjX Restricted ÂjX ÂjY r̂j

New York, Northern New Jersey, Long Island, NY-NJ-CT-PA 2.285 0.029 0.209 0.264 0.509 3.366
San Francisco-Oakland-San Jose, CA 1.209 0.138 0.289 0.269 -0.182 2.000
Los Angeles-Riverside-Orange County, CA 1.250 0.081 0.150 0.159 0.079 1.913
Chicago-Gary-Kenosha, IL-IN-WI 1.191 0.005 0.131 0.161 0.276 1.767
Salinas (Monterey-Carmel), CA 0.863 0.137 0.144 0.124 -0.189 1.435
San Diego, CA 0.872 0.123 0.098 0.085 -0.114 1.403
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD 0.958 -0.040 0.096 0.133 0.346 1.393
Miami-Fort Lauderdale, FL 0.964 0.041 0.015 0.035 0.191 1.352
Santa Barbara-Santa Maria-Lompoc, CA 0.713 0.176 0.125 0.090 -0.326 1.255
Boston-Worcester-Lawrence, MA-NH-ME-CT 0.797 0.034 0.128 0.136 0.074 1.241
Washington-Baltimore, DC-MD-VA-WV 0.683 -0.013 0.116 0.135 0.170 1.044
Las Vegas, NV-AZ 0.684 -0.025 0.057 0.083 0.246 0.987
New Orleans, LA 0.686 0.005 -0.065 -0.038 0.254 0.864
Providence-Fall River-Warwick, RI-MA 0.591 0.014 0.022 0.037 0.137 0.850
Stockton-Lodi, CA 0.529 -0.002 0.083 0.095 0.116 0.794
Milwaukee-Racine, WI 0.573 -0.009 0.037 0.057 0.181 0.792
Phoenix-Mesa, AZ 0.507 0.012 0.030 0.042 0.110 0.714
Denver-Boulder-Greeley, CO 0.467 0.054 0.066 0.061 -0.041 0.711
Sacramento-Yolo, CA 0.434 0.033 0.075 0.075 -0.001 0.694
Buffalo-Niagara Falls, NY 0.448 -0.054 -0.042 -0.008 0.318 0.620
Modesto, CA 0.389 -0.008 0.050 0.062 0.111 0.575
Seattle-Tacoma-Bremerton, WA 0.324 0.061 0.095 0.082 -0.124 0.570
Provo-Orem, UT 0.447 0.019 -0.048 -0.034 0.126 0.565
Champaign-Urbana, IL 0.435 -0.009 -0.080 -0.056 0.221 0.562
Detroit-Ann Arbor-Flint, MI 0.346 -0.047 0.108 0.125 0.160 0.554
Laredo, TX 0.524 -0.008 -0.194 -0.159 0.327 0.532
Salt Lake City-Ogden, UT 0.394 0.026 -0.015 -0.008 0.067 0.515
Reading, PA 0.403 -0.046 -0.017 0.011 0.265 0.515
Madison, WI 0.333 0.053 -0.018 -0.020 -0.021 0.483
Dallas-Fort Worth, TX 0.318 -0.044 0.047 0.067 0.187 0.463
Reno, NV 0.263 0.053 0.043 0.034 -0.087 0.454
Houston-Galveston-Brazoria, TX 0.323 -0.072 0.045 0.074 0.262 0.449
Cleveland-Akron, OH 0.329 -0.016 0.006 0.022 0.143 0.443
Allentown-Bethlehem-Easton, PA 0.308 -0.022 -0.005 0.012 0.162 0.413
West Palm Beach-Boca Raton, FL 0.235 0.017 0.046 0.045 -0.003 0.365
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Portland-Salem, OR-WA 0.241 0.047 0.037 0.029 -0.075 0.361
El Paso, TX 0.386 -0.041 -0.164 -0.127 0.349 0.349
State College, PA 0.292 0.036 -0.120 -0.111 0.082 0.341
Fresno, CA 0.232 -0.008 -0.014 -0.002 0.106 0.321
Lincoln, NE 0.330 0.022 -0.122 -0.108 0.135 0.307
Minneapolis-St. Paul, MN-WI 0.203 -0.032 0.067 0.078 0.101 0.292
Lafayette, IN 0.236 -0.006 -0.069 -0.054 0.140 0.266
Hartford, CT 0.087 -0.026 0.120 0.121 0.013 0.255
Springfield, MA 0.143 0.002 -0.003 0.001 0.042 0.235
Norfolk-Virginia Beach-Newport News, VA- 0.210 0.027 -0.095 -0.088 0.064 0.228
Bakersfield, CA 0.189 -0.063 0.020 0.043 0.212 0.226
Columbus, OH 0.156 -0.028 0.013 0.025 0.116 0.200
San Antonio, TX 0.222 -0.039 -0.097 -0.071 0.242 0.193
Bloomington-Normal, IL 0.126 -0.061 0.003 0.024 0.201 0.159
Austin-San Marcos, TX 0.069 0.016 0.014 0.011 -0.032 0.128
Tucson, AZ 0.122 0.052 -0.091 -0.095 -0.035 0.119
Erie, PA 0.153 -0.035 -0.114 -0.090 0.223 0.101
Toledo, OH 0.113 -0.041 -0.037 -0.019 0.171 0.099
Pittsburgh, PA 0.119 -0.047 -0.054 -0.033 0.202 0.094
Tampa-St. Petersburg-Clearwater, FL 0.109 0.003 -0.054 -0.047 0.067 0.081
Iowa City, IA 0.103 0.034 -0.072 -0.073 -0.007 0.075
Albuquerque, NM 0.113 0.049 -0.064 -0.069 -0.049 0.072
Rochester, NY 0.019 -0.041 -0.029 -0.014 0.135 0.047
Colorado Springs, CO 0.060 0.055 -0.066 -0.075 -0.080 0.041
Omaha, NE-IA 0.136 -0.019 -0.084 -0.068 0.153 0.037
St. Louis, MO-IL 0.052 -0.034 -0.007 0.005 0.111 0.016
Non-metro, HI 0.000 0.126 0.013 0.000 0.000 0.000
Anchorage, AK 0.000 0.023 0.077 0.000 0.000 0.000
Non-metro, AK 0.000 0.012 0.037 0.000 0.000 0.000
Honolulu, HI 0.000 0.204 0.057 0.000 0.000 0.000
Bryan-College Station, TX 0.063 0.027 -0.122 -0.118 0.036 -0.007
Albany-Schenectady-Troy, NY -0.026 -0.041 -0.026 -0.013 0.120 -0.013
Lancaster, PA -0.002 -0.011 -0.017 -0.013 0.040 -0.016
Corpus Christi, TX 0.074 -0.034 -0.106 -0.085 0.187 -0.017
Cincinnati-Hamilton, OH-KY-IN -0.007 -0.038 0.020 0.029 0.085 -0.031
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Non-metro, RI -0.094 0.040 0.071 0.051 -0.186 -0.042
Lubbock, TX 0.075 -0.009 -0.161 -0.144 0.162 -0.054
Fort Collins-Loveland, CO -0.045 0.079 -0.032 -0.054 -0.202 -0.058
Spokane, WA 0.011 0.008 -0.090 -0.085 0.047 -0.081
Bloomington, IN -0.015 0.032 -0.110 -0.111 -0.012 -0.087
Louisville, KY-IN -0.016 -0.023 -0.047 -0.037 0.089 -0.097
Syracuse, NY -0.081 -0.069 -0.056 -0.035 0.198 -0.126
Orlando, FL -0.057 0.006 -0.037 -0.038 -0.009 -0.126
Memphis, TN-AR-MS -0.044 -0.060 -0.013 0.004 0.153 -0.130
Visalia-Tulare-Porterville, CA -0.087 -0.016 -0.036 -0.031 0.041 -0.140
Pueblo, CO 0.006 -0.003 -0.162 -0.148 0.124 -0.156
Green Bay, WI -0.093 -0.011 -0.022 -0.020 0.014 -0.163
Scranton–Wilkes-Barre–Hazleton, PA -0.048 -0.027 -0.106 -0.092 0.132 -0.163
Amarillo, TX -0.028 -0.010 -0.142 -0.130 0.118 -0.177
Brownsville-Harlingen-San Benito, TX 0.048 -0.057 -0.221 -0.186 0.324 -0.183
Des Moines, IA -0.085 -0.022 -0.037 -0.031 0.056 -0.203
Sarasota-Bradenton, FL -0.138 0.066 -0.046 -0.066 -0.187 -0.208
South Bend, IN -0.094 -0.047 -0.072 -0.057 0.145 -0.219
Dayton-Springfield, OH -0.146 -0.030 -0.030 -0.024 0.054 -0.244
Eugene-Springfield, OR -0.159 0.088 -0.084 -0.108 -0.225 -0.250
Kansas City, MO-KS -0.125 -0.037 -0.015 -0.008 0.067 -0.259
Altoona, PA -0.082 -0.045 -0.158 -0.136 0.205 -0.263
Yuma, AZ -0.121 0.002 -0.100 -0.097 0.028 -0.266
Indianapolis, IN -0.183 -0.039 0.003 0.008 0.043 -0.277
Merced, CA -0.215 -0.012 -0.013 -0.016 -0.028 -0.298
Lansing-East Lansing, MI -0.218 -0.046 -0.008 -0.002 0.059 -0.304
Appleton-Oshkosh-Neenah, WI -0.185 -0.021 -0.052 -0.048 0.034 -0.318
Grand Rapids-Muskegon-Holland, MI -0.236 -0.044 -0.010 -0.005 0.048 -0.328
Lexington, KY -0.150 -0.033 -0.095 -0.084 0.107 -0.333
Harrisburg-Lebanon-Carlisle, PA -0.222 -0.029 -0.020 -0.018 0.020 -0.334
Waterloo-Cedar Falls, IA -0.132 -0.023 -0.129 -0.117 0.110 -0.343
Richmond-Petersburg, VA -0.228 -0.033 -0.006 -0.004 0.020 -0.354
Fargo-Moorhead, ND-MN -0.115 -0.039 -0.174 -0.153 0.191 -0.355
Rockford, IL -0.237 -0.069 -0.024 -0.011 0.124 -0.367
Boise City, ID -0.185 0.010 -0.077 -0.080 -0.032 -0.376
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Odessa-Midland, TX -0.154 -0.063 -0.136 -0.113 0.215 -0.382
Atlanta, GA -0.291 -0.032 0.063 0.057 -0.053 -0.382
Oklahoma City, OK -0.146 -0.020 -0.135 -0.124 0.103 -0.386
Davenport-Moline-Rock Island, IA-IL -0.215 -0.041 -0.088 -0.077 0.103 -0.397
Wichita, KS -0.187 -0.048 -0.079 -0.066 0.122 -0.402
York, PA -0.277 -0.032 -0.036 -0.033 0.022 -0.425
Portland, ME -0.239 0.051 -0.060 -0.078 -0.170 -0.429
San Luis Obispo-Atascadero-Paso Robles, CA -0.458 0.124 0.077 0.020 -0.531 -0.436
Jacksonville, FL -0.265 -0.009 -0.051 -0.054 -0.025 -0.438
Lawrence, KS -0.240 0.038 -0.129 -0.138 -0.086 -0.440
Yakima, WA -0.287 -0.009 -0.029 -0.034 -0.048 -0.442
Binghamton, NY -0.302 -0.054 -0.123 -0.109 0.133 -0.458
Cedar Rapids, IA -0.266 -0.002 -0.078 -0.081 -0.024 -0.469
Sheboygan, WI -0.302 -0.019 -0.062 -0.062 -0.004 -0.483
Savannah, GA -0.307 -0.011 -0.080 -0.082 -0.013 -0.484
Charlottesville, VA -0.329 0.054 -0.090 -0.109 -0.185 -0.491
Rochester, MN -0.325 -0.061 -0.003 0.003 0.060 -0.494
Sioux Falls, SD -0.230 -0.006 -0.146 -0.141 0.045 -0.501
Muncie, IN -0.272 -0.043 -0.122 -0.110 0.114 -0.501
Naples, FL -0.424 0.095 0.027 -0.016 -0.408 -0.509
Canton-Massillon, OH -0.322 -0.024 -0.083 -0.081 0.020 -0.517
Sioux City, IA-NE -0.220 -0.060 -0.161 -0.139 0.201 -0.523
Gainesville, FL -0.301 0.024 -0.134 -0.141 -0.067 -0.547
Yuba City, CA -0.394 0.009 -0.066 -0.077 -0.103 -0.555
Tulsa, OK -0.280 -0.032 -0.104 -0.096 0.068 -0.559
Abilene, TX -0.256 0.004 -0.223 -0.216 0.067 -0.562
Utica-Rome, NY -0.375 -0.064 -0.125 -0.111 0.138 -0.568
Chico-Paradise, CA -0.444 0.053 -0.067 -0.092 -0.236 -0.579
La Crosse, WI-MN -0.355 -0.020 -0.126 -0.123 0.028 -0.592
Peoria-Pekin, IL -0.399 -0.061 -0.041 -0.034 0.064 -0.597
Janesville-Beloit, WI -0.395 -0.050 -0.019 -0.017 0.020 -0.612
Melbourne-Titusville-Palm Bay, FL -0.360 -0.000 -0.104 -0.108 -0.042 -0.614
Medford-Ashland, OR -0.425 0.095 -0.099 -0.133 -0.317 -0.623
Elmira, NY -0.415 -0.061 -0.132 -0.119 0.122 -0.624
Decatur, IL -0.385 -0.089 -0.080 -0.062 0.168 -0.627
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Richland-Kennewick-Pasco, WA -0.440 -0.051 0.011 0.009 -0.014 -0.642
Topeka, KS -0.349 -0.024 -0.137 -0.132 0.050 -0.642
St. Joseph, MO -0.347 -0.026 -0.168 -0.160 0.076 -0.652
Springfield, IL -0.435 -0.039 -0.082 -0.080 0.021 -0.659
Billings, MT -0.329 0.013 -0.169 -0.172 -0.021 -0.674
Fort Walton Beach, FL -0.383 0.062 -0.174 -0.192 -0.163 -0.675
Corvalis, OR -0.474 0.081 -0.081 -0.114 -0.309 -0.688
Columbia, MO -0.401 0.023 -0.164 -0.172 -0.073 -0.691
Fort Myers-Cape Coral, FL -0.454 0.049 -0.084 -0.107 -0.215 -0.692
Saginaw-Bay City-Midland, MI -0.489 -0.074 -0.035 -0.028 0.064 -0.716
Tallahassee, FL -0.451 0.022 -0.098 -0.112 -0.133 -0.719
Raleigh-Durham-Chapel Hill, NC -0.503 0.011 0.018 -0.004 -0.202 -0.723
Burlington, VT -0.453 0.065 -0.082 -0.110 -0.260 -0.730
Baton Rouge, LA -0.465 -0.031 -0.053 -0.057 -0.030 -0.730
Waco, TX -0.439 -0.047 -0.118 -0.111 0.069 -0.744
Roanoke, VA -0.470 -0.017 -0.107 -0.110 -0.030 -0.745
Evansville-Henderson, IN-KY -0.458 -0.047 -0.104 -0.099 0.051 -0.749
Williamsport, PA -0.471 -0.031 -0.130 -0.127 0.022 -0.766
Nashville, TN -0.539 -0.001 -0.016 -0.033 -0.159 -0.767
Grand Junction, CO -0.518 0.114 -0.134 -0.174 -0.374 -0.771
Lewiston-Auburn, ME -0.435 -0.008 -0.123 -0.127 -0.032 -0.776
Cheyenne, WY -0.414 0.056 -0.217 -0.231 -0.128 -0.789
Youngstown-Warren, OH -0.512 -0.052 -0.090 -0.086 0.039 -0.804
Charleston-North Charleston, SC -0.534 0.025 -0.082 -0.101 -0.179 -0.805
Columbus, GA-AL -0.488 -0.055 -0.152 -0.141 0.097 -0.819
Fort Wayne, IN -0.533 -0.063 -0.067 -0.062 0.043 -0.829
Birmingham, AL -0.561 -0.047 -0.034 -0.037 -0.032 -0.852
San Angelo, TX -0.487 -0.025 -0.177 -0.174 0.036 -0.853
Beaumont-Port Arthur, TX -0.526 -0.108 -0.070 -0.052 0.167 -0.857
Kalamazoo-Battle Creek, MI -0.602 -0.056 -0.037 -0.039 -0.018 -0.859
Santa Fe, NM -0.641 0.127 -0.017 -0.073 -0.529 -0.861
Columbia, SC -0.566 -0.007 -0.076 -0.088 -0.108 -0.874
Kokomo, IN -0.618 -0.110 0.029 0.037 0.072 -0.901
Fayetteville, NC -0.566 0.028 -0.178 -0.192 -0.130 -0.906
Daytona Beach, FL -0.562 0.019 -0.144 -0.158 -0.130 -0.919
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Montgomery, AL -0.578 -0.003 -0.124 -0.134 -0.089 -0.921
Pittsfield, MA -0.689 0.014 -0.050 -0.073 -0.222 -0.929
Springfield, MO -0.559 0.003 -0.175 -0.182 -0.063 -0.930
Fort Pierce-Port St. Lucie, FL -0.620 0.011 -0.078 -0.096 -0.173 -0.938
New London-Norwich, CT-RI -0.765 0.006 0.051 0.019 -0.298 -0.944
Jamestown, NY -0.633 -0.079 -0.157 -0.144 0.119 -0.950
Eau Claire, WI -0.613 -0.026 -0.120 -0.125 -0.042 -0.954
Shreveport-Bossier City, LA -0.583 -0.042 -0.124 -0.122 0.011 -0.956
Charlotte-Gastonia-Rock Hill, NC-SC -0.660 -0.013 0.007 -0.013 -0.183 -0.960
Bellingham, WA -0.701 0.074 -0.038 -0.080 -0.394 -0.962
Sharon, PA -0.610 -0.033 -0.151 -0.151 -0.003 -0.975
Victoria, TX -0.623 -0.074 -0.104 -0.096 0.069 -1.002
Jackson, MS -0.627 -0.031 -0.099 -0.104 -0.048 -1.007
McAllen-Edinburg-Mission, TX -0.541 -0.079 -0.228 -0.207 0.198 -1.015
Jackson, MI -0.722 -0.064 -0.034 -0.038 -0.037 -1.029
Duluth-Superior, MN-WI -0.676 -0.069 -0.116 -0.110 0.049 -1.045
Wichita Falls, TX -0.601 -0.008 -0.226 -0.228 -0.012 -1.047
Elkhart-Goshen, IN -0.707 -0.043 -0.059 -0.067 -0.071 -1.049
Mobile, AL -0.676 -0.016 -0.128 -0.137 -0.084 -1.068
Killeen-Temple, TX -0.645 0.040 -0.220 -0.237 -0.158 -1.069
Las Cruces, NM -0.638 0.019 -0.190 -0.203 -0.121 -1.071
Athens, GA -0.729 0.016 -0.125 -0.145 -0.187 -1.077
Terre Haute, IN -0.676 -0.060 -0.139 -0.134 0.040 -1.081
Pensacola, FL -0.676 0.003 -0.146 -0.159 -0.121 -1.090
Tuscaloosa, AL -0.714 -0.013 -0.099 -0.112 -0.123 -1.093
Dubuque, IA -0.667 -0.024 -0.150 -0.155 -0.044 -1.096
Mansfield, OH -0.722 -0.048 -0.110 -0.112 -0.027 -1.102
Little Rock-North Little Rock, AR -0.699 -0.011 -0.100 -0.113 -0.125 -1.107
Lake Charles, LA -0.721 -0.064 -0.085 -0.085 -0.002 -1.126
Panama City, FL -0.723 0.026 -0.138 -0.159 -0.203 -1.131
Owensboro, KY -0.702 -0.041 -0.144 -0.145 -0.015 -1.136
Greenville, NC -0.766 -0.022 -0.085 -0.098 -0.129 -1.164
Grand Forks, ND-MN -0.700 -0.046 -0.210 -0.205 0.046 -1.188
Lakeland-Winter Haven, FL -0.759 -0.023 -0.119 -0.130 -0.099 -1.193
Lima, OH -0.787 -0.062 -0.103 -0.105 -0.014 -1.198
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Greensboro–Winston Salem–High Point, NC -0.848 -0.016 -0.049 -0.070 -0.196 -1.253
Macon, GA -0.844 -0.068 -0.079 -0.082 -0.033 -1.260
St. Cloud, MN -0.859 -0.048 -0.110 -0.118 -0.070 -1.269
Non-metro, CA -0.982 0.059 -0.017 -0.067 -0.459 -1.282
Biloxi-Gulfport-Pascagoula, MS -0.818 -0.026 -0.135 -0.146 -0.097 -1.289
Albany, GA -0.860 -0.063 -0.099 -0.103 -0.038 -1.293
Punta Gorda, FL -0.859 0.049 -0.143 -0.176 -0.304 -1.307
Wilmington, NC -0.914 0.071 -0.104 -0.148 -0.409 -1.313
Tyler, TX -0.884 -0.025 -0.106 -0.121 -0.142 -1.329
Benton Harbor, MI -0.938 -0.029 -0.081 -0.099 -0.165 -1.332
Monroe, LA -0.867 -0.036 -0.133 -0.142 -0.090 -1.350
Augusta-Aiken, GA-SC -0.895 -0.057 -0.093 -0.100 -0.071 -1.351
Huntsville, AL -0.908 -0.055 -0.062 -0.073 -0.102 -1.360
Lafayette, LA -0.874 -0.057 -0.130 -0.134 -0.038 -1.369
Barnstable-Yarmouth (Cape Cod), MA -1.111 0.121 0.046 -0.030 -0.712 -1.371
Redding, CA -1.011 0.041 -0.074 -0.115 -0.382 -1.375
Casper, WY -0.833 -0.002 -0.219 -0.231 -0.107 -1.399
Non-metro, CT -1.122 -0.007 0.078 0.035 -0.398 -1.420
Knoxville, TN -0.937 -0.011 -0.125 -0.144 -0.183 -1.426
Charleston, WV -0.917 -0.052 -0.117 -0.125 -0.073 -1.446
Auburn-Opelika, AL -0.950 -0.015 -0.132 -0.150 -0.171 -1.448
Missoula, MT -0.905 0.101 -0.208 -0.252 -0.410 -1.450
Hattiesburg, MS -0.910 -0.029 -0.180 -0.189 -0.088 -1.450
Johnstown, PA -0.911 -0.062 -0.201 -0.199 0.016 -1.451
Chattanooga, TN-GA -0.970 -0.035 -0.105 -0.121 -0.145 -1.457
Rapid City, SD -0.948 0.033 -0.212 -0.237 -0.241 -1.536
Lawton, OK -0.942 -0.016 -0.253 -0.262 -0.080 -1.547
Bismarck, ND -0.918 -0.048 -0.250 -0.248 0.010 -1.566
Wausau, WI -1.066 -0.049 -0.086 -0.103 -0.150 -1.576
Flagstaff, AZ-UT -1.089 0.030 -0.129 -0.166 -0.338 -1.595
Non-metro, PA -1.057 -0.053 -0.145 -0.156 -0.096 -1.601
Steubenville-Weirton, OH-WV -1.023 -0.058 -0.189 -0.193 -0.041 -1.603
Wheeling, WV-OH -1.026 -0.058 -0.189 -0.193 -0.043 -1.613
Fayetteville-Springdale-Rogers, AR -1.066 0.005 -0.132 -0.160 -0.261 -1.621
Jackson, TN -1.073 -0.063 -0.098 -0.110 -0.109 -1.622
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Great Falls, MT -0.957 0.036 -0.283 -0.305 -0.203 -1.624
Fort Smith, AR-OK -1.010 -0.045 -0.194 -0.201 -0.068 -1.635
Jacksonville, NC -1.094 0.051 -0.254 -0.287 -0.307 -1.659
Pocatello, ID -1.042 -0.061 -0.141 -0.149 -0.071 -1.660
Danville, VA -1.088 -0.057 -0.163 -0.171 -0.081 -1.661
Glens Falls, NY -1.201 -0.020 -0.109 -0.136 -0.254 -1.663
Enid, OK -1.041 -0.032 -0.219 -0.229 -0.095 -1.674
Non-metro, WA -1.186 0.037 -0.067 -0.113 -0.432 -1.683
Huntington-Ashland, WV-KY-OH -1.072 -0.074 -0.177 -0.180 -0.022 -1.695
Greenville-Spartanburg-Anderson, SC -1.149 -0.031 -0.078 -0.103 -0.232 -1.701
Alexandria, LA -1.127 -0.031 -0.173 -0.190 -0.157 -1.738
Non-metro, NY -1.246 -0.050 -0.123 -0.143 -0.179 -1.755
Pine Bluff, AR -1.128 -0.053 -0.168 -0.179 -0.101 -1.788
Houma, LA -1.194 -0.054 -0.123 -0.139 -0.153 -1.802
Non-metro, MA -1.376 0.063 -0.042 -0.104 -0.580 -1.833
Non-metro, ND -1.113 -0.041 -0.262 -0.269 -0.064 -1.839
Joplin, MO -1.216 -0.011 -0.246 -0.266 -0.187 -1.889
Dover, DE -1.327 -0.009 -0.086 -0.123 -0.340 -1.896
Non-metro, ID -1.256 0.012 -0.174 -0.207 -0.312 -1.902
Non-metro, UT -1.315 0.010 -0.124 -0.162 -0.360 -1.909
Asheville, NC -1.343 0.058 -0.132 -0.185 -0.492 -1.927
Non-metro, NV -1.409 -0.011 0.005 -0.041 -0.427 -1.928
Clarksville-Hopkinsville, TN-KY -1.275 -0.004 -0.206 -0.233 -0.251 -1.955
Lynchburg, VA -1.331 -0.031 -0.140 -0.166 -0.245 -1.962
Non-metro, OR -1.377 0.062 -0.113 -0.169 -0.525 -1.966
Non-metro, MD -1.441 -0.022 -0.037 -0.078 -0.376 -1.973
Decatur, AL -1.356 -0.072 -0.085 -0.105 -0.184 -2.008
Non-metro, OH -1.387 -0.052 -0.111 -0.135 -0.228 -2.020
Myrtle Beach, SC -1.402 0.038 -0.148 -0.196 -0.446 -2.028
Longview-Marshall, TX -1.360 -0.057 -0.149 -0.168 -0.179 -2.048
Bangor, ME -1.365 -0.018 -0.169 -0.198 -0.271 -2.084
Florence, AL -1.398 -0.042 -0.149 -0.174 -0.232 -2.098
Cumberland, MD-WV -1.434 -0.040 -0.171 -0.196 -0.233 -2.099
Sumter, SC -1.391 -0.037 -0.182 -0.206 -0.218 -2.106
Parkersburg-Marietta, WV-OH -1.394 -0.072 -0.170 -0.184 -0.136 -2.121
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Non-metro, WY -1.402 0.007 -0.165 -0.203 -0.351 -2.121
Sherman-Denison, TX -1.449 -0.028 -0.137 -0.168 -0.294 -2.138
Gadsden, AL -1.446 -0.069 -0.150 -0.169 -0.174 -2.185
Non-metro, IN -1.500 -0.050 -0.113 -0.142 -0.269 -2.187
Non-metro, IL -1.519 -0.052 -0.154 -0.180 -0.241 -2.214
Goldsboro, NC -1.509 -0.007 -0.176 -0.213 -0.340 -2.226
Johnson City-Kingsport-Bristol, TN-VA -1.485 -0.028 -0.180 -0.209 -0.273 -2.236
Non-metro, NM -1.482 0.002 -0.202 -0.238 -0.338 -2.255
Non-metro, MT -1.461 0.059 -0.236 -0.285 -0.459 -2.262
Non-metro, KS -1.488 -0.035 -0.240 -0.263 -0.216 -2.276
Dothan, AL -1.533 -0.040 -0.186 -0.214 -0.253 -2.314
Non-metro, WV -1.523 -0.042 -0.210 -0.234 -0.228 -2.324
Non-metro, IA -1.554 -0.027 -0.192 -0.223 -0.291 -2.351
Hickory-Morganton-Lenoir, NC -1.624 -0.008 -0.124 -0.168 -0.412 -2.356
Ocala, FL -1.582 -0.010 -0.166 -0.205 -0.362 -2.363
Florence, SC -1.606 -0.049 -0.131 -0.162 -0.292 -2.381
Rocky Mount, NC -1.640 -0.024 -0.114 -0.155 -0.381 -2.384
Anniston, AL -1.579 -0.046 -0.190 -0.216 -0.250 -2.385
Texarkana, TX-Texarkana, AR -1.556 -0.068 -0.200 -0.219 -0.178 -2.388
Non-metro, NE -1.592 -0.021 -0.256 -0.285 -0.275 -2.448
Non-metro, MN -1.735 -0.047 -0.163 -0.197 -0.316 -2.498
Jonesboro, AR -1.651 -0.026 -0.238 -0.269 -0.293 -2.533
Non-metro, WI -1.761 -0.028 -0.120 -0.163 -0.406 -2.535
Non-metro, AZ -1.789 0.037 -0.163 -0.222 -0.557 -2.580
Non-metro, VT -1.775 0.073 -0.165 -0.234 -0.647 -2.599
Non-metro, MI -1.864 -0.038 -0.108 -0.153 -0.421 -2.632
Non-metro, FL -1.823 0.010 -0.167 -0.220 -0.493 -2.683
Non-metro, LA -1.846 -0.058 -0.178 -0.212 -0.312 -2.745
Non-metro, TX -1.848 -0.043 -0.206 -0.241 -0.333 -2.767
Non-metro, VA -1.908 -0.031 -0.163 -0.207 -0.415 -2.771
Non-metro, OK -1.830 -0.034 -0.255 -0.289 -0.317 -2.782
Non-metro, NH -2.059 0.042 -0.082 -0.159 -0.715 -2.915
Non-metro, ME -2.004 0.027 -0.184 -0.246 -0.585 -2.934
Non-metro, MS -1.956 -0.066 -0.215 -0.247 -0.301 -2.950
Non-metro, MO -2.048 -0.023 -0.251 -0.296 -0.419 -3.045
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Table A.4: List of Metropolitan and Non-Metropolitan Areas Ranked by Inferred Land Value

Full Name of Metropolitan Area N̂ j Q̂j ÂjX Restricted ÂjX ÂjY r̂j

Non-metro, KY -2.086 -0.057 -0.193 -0.233 -0.382 -3.091
Non-metro, NC -2.164 -0.013 -0.148 -0.207 -0.555 -3.115
Non-metro, SD -2.036 0.001 -0.279 -0.328 -0.458 -3.119
Non-metro, GA -2.219 -0.040 -0.146 -0.200 -0.501 -3.178
Non-metro, SC -2.203 -0.033 -0.140 -0.196 -0.521 -3.192
Non-metro, CO -2.333 0.112 -0.094 -0.199 -0.980 -3.236
Non-metro, DE -2.322 0.010 -0.073 -0.150 -0.720 -3.242
Non-metro, AR -2.267 -0.028 -0.237 -0.289 -0.485 -3.383
Non-metro, TN -2.470 -0.038 -0.189 -0.249 -0.559 -3.614
Non-metro, AL -2.761 -0.067 -0.189 -0.250 -0.573 -4.025

See text for estimation procedure. ÂjX corresponds to the trade-productivity estimates obtained using wage, housing price, and density data, while Restricted
ÂjX corresponds to trade-productivity estimates obtained using wage and housing price data plus the constant home-productivity assumption.
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Figure A.1: Comparison of Nonlinear and Linear Model
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Figure A.2: Estimated Amenity Distribution, 2000
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Figure A.2 is smoothed with a Gaussian kernel, bandwidth=0.1.
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