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Abstract

This paper studies the effects of interest rate movements on investment. The de-

pendence of plant-level investment decisions on interest rates is important for under-

standing their smoothing effects. We introduce an interest rate process in the form

of a state dependent discount factor that directly affects the decisions of the plant.

Importantly, the stochastic discount factor is taken from the data rather than from

the solution of a stochastic business cycle model. We find that that non-convexities

at the plant level have aggregate implications when using an empirically consistent

stochastic discount factor. The aggregate investment response to a shock to aggregate

productivity depends on the nature of capital adjustment costs when the stochastic

discount factor mimics the patterns in the data.
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1 Motivation

This paper studies the dependence of plant-level and aggregate investment on interest rates

when adjustment costs are non-convex. This dependence is important both for understanding

the smoothing effects of interest rate movements on investment and ultimately the transmis-

sion of monetary policy.

As is now understood from a number of studies at the establishment level, investment

at the plant level is characterized by periods of only minimal changes in the capital stock

coupled with intermittent periods of large capital adjustments. These patterns are difficult

if not impossible to mimic in the standard quadratic adjustment cost model. Instead, these

patterns are captured in models which rely on the presence of non-convex adjustment costs.1

Following the lead of Thomas (2002), Khan and Thomas (2003) and Khan and Thomas

(2008), one might conjecture that the non-convexities at the plant-level are not important

for aggregate investment. In those papers, state dependent interest rates are determined in

equilibrium. A striking result from this literature is that the absence of aggregate effects of

lumpy investment: the aggregate model with non-convexities at the micro-level is essentially

indistinguishable from an aggregate model without non-convexities. The key to the result,

as noted by Thomas (2002), is the response of the interest rate to aggregate shocks and the

evolution of the capital stock.2

Those results, however, do not quite address the question we raise here. The issue is the

interest rate process. Our focus is on the effects of interest rate movements found in the

data, rather than those created in the underlying equilibrium of a stochastic business cycle

model. It is entirely conceivable that the equilibrium smoothing of plant-level investment

through interest rate movements does not arise in a model economy in which interest rates

follow empirically consistent patterns.

The problem is that the interest rate process from the standard RBC model does not

match the data well, as discussed, for example, in Beaudry and Guay (1996).3 Thus, the

smoothing of lumpy investment through interest rate movements produced in these models

1See, for example, the results reported in Caballero and Engel (1999) and Cooper and Haltiwanger (2006).
2Cooper and Haltiwanger (2006) find some, but not complete, smoothing by aggregation arising from

idiosyncratic shocks when interest rates are held constant.
3This point appears in Thomas (2002) as well: Table 5 indicates a correlation of -0.385 between the real

interest rate and output in the data but a correlation of 0.889 in the benchmark model.
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might be both theoretically of interest and model-consistent, but not empirically based.

One way to see this difference is by studying aggregate investment in a model with two

features. The first, as in Cooper and Haltiwanger (2006), is the presence of non-convexities

in the capital adjustment process. The second is a stochastic discount factor which directly

effects the decisions of the plant. But, in contrast to Thomas (2002) and the literature that

has followed, we focus on representations of the stochastic factor that are empirically based

rather than the outcome of a particular stochastic equilibrium model.

The results from this exercise indicate that non-convexities at the plant-level have ag-

gregate implications for empirically consistent stochastic discount factors. Fluctuations in

investment along the extensive and intensive margins are consistent with the empirical pat-

terns reported in Gourio and Kashyap (2007). Interestingly, the estimation of parameters at

the plant-level is robust to the choice of the interest rate process.

do we ever get back to this or to the lagged investment rate stuff?? we

do get into this at the plant and aggregate levels. but not getting back to

the data. not sure what GK actually present in terms of the data that is

helpful since they focus on adjustment rate correlated with investment, not

with driving stuff. instead, do the CHP pro cyclical spike stuff.

don’t miss table 7 of thomas JPE. and recall that figure which shows a

pro cyclical extensive margin. so where does the smoothing come from?

2 Dynamic Capital Demand

Our approach is to begin with a dynamic capital demand problem at the plant level. For this

problem, we follow Cooper and Haltiwanger (2006) for the specification of the adjustment

costs. But, in contrast to that analysis, we allow the discount factor to be stochastic. We

parameterize this stochastic discount factor using the data. We then study the demand for

capital at the plant level and in the aggregate.

2.1 Plant Level: Dynamic Optimization

Following Cooper and Haltiwanger (2006), the dynamic programming problem is specified

as:
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V (A, ε,K) = max{V i(A, ε,K), V a(A, ε,K)}, ∀(A, ε,K) (1)

where K represents the beginning of period capital stock, A is the aggregate productivity

shock, ε is the idiosyncratic productivity shock. The superscripts refer to active investment

“a,” where the plant undertakes investment to obtain capital stock K ′ in the next period,

and inactivity “i,” where no investment occurs. These options, in turn, are defined by:

V i(A, ε,K) = Π(A, ε,K) + EA′,ε′|A,ε

[
β̃V (A′, ε′, K(1− δ))

]
(2)

and

V a(A, ε,K) = max
K′

{
Π(A, ε,K)− C(A, ε,K,K ′) + EA′,ε′|A,ε

[
β̃V (A′, ε′, K ′)

]}
(3)

where β̃ is the state dependent discount rate for the establishment. The specification of this

discount rate is a key to our analysis of this model.

The model includes three types of adjustment costs which, as reported in Cooper and

Haltiwanger (2006), are the leading types of estimated adjustment costs.

C(A, ε,K,K ′) = (1− Λ) Π(A, ε,K)− pb(I > 0)(K ′ + (1− δ)K)

−ps(I < 0)((1− δ)K −K ′) +
ν

2

(
K ′ − (1− δ)K

K

)2

K (4)

The first is a disruption cost parameterized by Λ. If Λ < 1, then any level of gross

investment implies that a fraction of revenues is lost. The second is the quadratic adjustment

cost parameterized by ν. The third is a form of irreversibility in which there is a gap between

the buying, pb, and selling, ps, prices of capital. These are included in (3) by the use of the

indicator function for the buying (I > 0) and selling of capital (I < 0).

The profit function is

Π(A, ε,K) = AεKα. (5)

This is a reduced-form profit function which can be derived from an optimization problem

over flexible factors of production (i.e. labor, materials, etc.). The parameter α will reflect

factor shares as well as the elasticity of demand for the plant’s output. Here A is a aggregate

productivity shock and ε is the idiosyncratic productivity shock.
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3 Finding the Stochastic Discount Factor

The optimization problem given in (1) includes a stochastic discount factor, β̃. As is custom-

ary within a stochastic equilibrium model in which households do not face costs of adjusting

their portfolios, rates of return are linked to household preferences through an Euler equation

Et

[
β̃t+1R

j
t+1

]
= 1 (6)

for any asset j. Here

β̃t+1 ≡
βu′(ct+1)

u′(ct)
(7)

is the standard pricing kernel where ct is household consumption in period t and u(·) repre-

sents utility for a representative household.

We study two specifications of β̃t+1. We start with the process for β̃t+1 that comes

from the data. We then study, following Thomas (2002) and others, a stochastic general

equilibrium version of the state dependent interest rates.

For both, we are interested in a state space (capital stock and productivity shocks)

representation of this stochastic discount factor. This form of state dependence is immediate

in versions of the stochastic growth model with capital and a technology shock in the state

vector. Once there are nonlinearities in adjustment costs as well as plant-specific shocks, the

state vector is more complex. But, when the results of Thomas (2002) hold, a specification

of the stochastic discount factor as a function of the aggregate shocks and the aggregate

capital stock should be sufficient. In this way, the state dependent discount factor can be

used directly in (1).

3.1 Data-Based Approach

We study two data-based approaches to uncovering β̃t+1. In the first, we use the Euler

equation from (7). The second bypasses the household problem and looks directly at interest

rates.

For the first approach, data on consumption and some assumptions on preferences, (7)

can be used to generate a time series for β̃t+1. For this exercise, assume u(c) = log(c) and

set β = 0.95.4

4Future work will look at the robustness of our results to alternative specifications of preferences and the

discount factor.
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should we explore more here. like CRRA and then recursive. see Gallant

and Hong and also the hansen-richard paper...and chapter in LS, pg 288

Once we solve for the stochastic discount factor, we compute the empirical relationship

between the stochastic discount factor and observables corresponding to key state variables

in our model. This relationship is estimated by regressing the stochastic discount factor,

β̃t+1, on measures of the capital stock, current and future productivity: (At, At+1, Kt). The

inclusion of both current period and future period values of the aggregate shock, At, are

required since β̃t+1 measures the realized real return between periods t and t+ 1.

The appendix provides a detailed discussion of our data. For our analysis, we consider

At to be total factor productivity in period t. With a focus on business cycle dynamics, we

model a stationary specification of the shock process, which we parameterize from the data

after detrending using the H-P filter. As discussed in the appendix, our results depend on the

choice of the parameter of the H-P filter, denoted λ. The choice of this parameter determines

directly the serial correlation of the total factor productivity process and consequently the

dependence of β̃t+1 on the state vector (At, At+1, Kt). The mapping from the values of λ to

the serial correlation of the aggregate shock, ρA, is given in Table 11 in the Appendix. We

therefore report results for three distinct values of ρA.

resolve this by having the two extreme cases.

Our results are presented in Table 1. There are four different specifications and three

different values of ρA for each. For each of these empirical models, we report regression

coefficients and goodness of fit measures.

for this table have the consumption based SDF ... eliminate the row

without At+1. add in our new estimated model using the various FF portfolios

and Shiller.... what about the last two? i think we should keep em...???

The first two blocks report two different specifications of the dependence of β̃t+1 on

different parts of the (At, At+1) state space. The model in which β̃t+1 depends on (At, At+1)

fits better than the model with At alone. The results ignore the capital stock since the

inclusion of Kt adds very little to the empirical model.

As is made clear in the table, the magnitude of the coefficient depends on the choice of

ρA. A lower value of this parameter leads to more dependence on At and less, in absolute

value, dependence on At+1 in the second block of results. This will be important later when

we study how investment responds to productivity shocks.
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Table 1: Empirical estimates of relationship between state variables and discount factors

Specification ρA Constant At At+1 R2 dEt[β̃(·)]
dAt

0.14 -0.08 0.12 0.02 0.12

(0.00) (0.12)

β̃ (At) 0.45 -0.08 0.01 0.00 0.01

(0.00) (0.09)

0.84 -0.08 -0.04 0.02 -0.04

(0.00) (0.04)

0.14 -0.08 0.21 -0.61 0.46 0.12

(0.00) (0.09) (0.09)

β̃ (At, At+1) 0.45 -0.08 0.24 -0.52 0.49 0.01

(0.00) (0.07) (0.07)

0.84 -0.08 0.34 -0.46 0.56 -0.04

(0.00) (0.05) (0.06)

0.14 0.02 -0.37 0.05 0.36

(0.00) (0.23)

r (At) 0.45 0.02 -0.37 0.10 0.36

(30-day T-bill) (0.00) (0.16)

0.84 0.02 -0.25 0.19 0.24

(0.00) (0.07)

0.14 0.03 -0.27 0.03 0.25

(0.00) (0.21)

r (At) 0.45 0.03 -0.30 0.07 0.28

(AAA LT Bond) (0.00) (0.15)

0.84 0.04 -0.40 0.57 0.37

(0.00) (0.05)
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Instead of working through the Euler equation, the last two blocks replace β̃t+1 with

observed returns on different assets. The argument for doing so is that the household asset

pricing model has failed in a number of ways. Thus instead of going through the Euler

equation, we can look directly at interest rates that a firm might use to discount profits.

We study two real interest rates, the 30-day T bill and a long term AAA bond. These

are ex ante rates and thus depend on the current state, At. The real rates are constructed

by subtracting realized inflation for the 30-day T bill and long-term inflation expectations

from the Survey of Professional Forecasters for the AAA bond from the respective nominal

rate. Interestingly, the response of the return to a variation in At is generally negative and

it is significant for the larger values of λ. Since the interest rate is inversely related to the

stochastic discount factor, high realizations of productivity translate into higher discount

factors.

3.2 Model-Based Approach

An alternative approach is to study the dependence of the stochastic discount factor on the

state variables using a model. Table 2 reports results for three models. For each model, we

use three different values of ρA corresponding to those used in the empirical specification.

The first model, labeled RBC, is the standard real business cycle model, building from

King, Plosser and Rebelo (1988). Here we see that the return responds positively to both

the current productivity shock and the capital stock and negatively with future productivity

for all values of ρA.

The second model, labeled Chat-Coop, comes from Chatterjee and Cooper (1993), which

studies a stochastic real business cycle model with monopolistic competition. This envi-

ronment is closer to the underlying market structure assumed in Cooper and Haltiwanger

(2006).

The results for the Chat-Coop specification in Table 2 come from a model with no entry

and exit and a markup of 25 percent.5. The results are quite similar to those in the standard

RBC model.

recheck the GK stuff.... why so different ??

The third model, labeled Gourio-Kashyap, represents the Gourio and Kashyap (2007)

5The markup is based on a CES specification where the elasticity of substitution is set to 5 for both

consumption and capital goods.
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Table 2: Model-based relationship between state variables and discount factor

Model ρA At At+1 Kt
dEt[β̃(At,At+1)]

dAt

0.14 0.08 -0.39 0.09 0.031

RBC 0.45 0.15 -0.43 0.09 -0.044

0.84 0.37 -0.59 0.09 -0.121

0.14 0.09 -0.41 0.09 0.032

Chat-Coop 0.45 0.17 -0.47 0.09 -0.038

0.84 0.43 -0.64 0.09 -0.110

0.14 0.11 -0.35 0.10 0.062

Gourio-Kashyap 0.45 0.18 -0.40 0.10 0.004

0.84 0.43 -0.59 0.10 -0.066

specification of the model proposed by Thomas (2002). However, the relationship in Table

2 is only an approximation of the true stochastic discount factor because the state space for

that model includes the cross-sectional distribution of capital vintages as well as the capital

stock and productivity shocks. Thus, the stochastic discount factor should, in principal,

depend on the cross sectional distribution.

However, given that the real allocations from the Thomas (2002) model with lumpy

investment are so close to the stochastic growth model, one would conjecture that the process

for the stochastic discount factor would be close to that of the RBC and/or Chat-Coop

specifications. Tables 4-6 of Thomas (2002) indicate that the interest rate process in the

model with lumpy investment is extremely similar to that of the standard RBC model

(benchmark in those tables). From Figure 4 of Thomas (2002), the interest rate response

to a shock is only 3 basis points larger in the lumpy investment compared to the RBC

benchmark. This suggests that plant-level investment decisions must be very sensitive to

interest rate movements in the lumpy-investment model in order for such small movements

in intertemporal prices to smooth investment.

Put in another way, the stochastic discount factor in the Thomas (2002) model can

be well characterized in the same way as in the RBC and Chat-Coop specifications, using

only aggregate states and ignoring underlying heterogeneity. This relationship, shown in

9
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Table 2, is estimated based on a simulated data from the model using the Gourio-Kashyap

specification of the underlying parameters. So while the model-based stochastic discount

factor is a function of a larger set of state variables accounting for underlying heterogeneity,

the simpler representation that includes only productivity and the capital stock captures

99.1 percent of the variation in the stochastic discount factor, as measured by the R2 in the

regression. The estimated relationships across all value of ρa are very similar to the RBC

and Chat-Coop specifications.

3.3 Response of the expected stochastic discount factor to pro-

ductivity

It is instructive to compare the response of interest rates to the state variables in these

models with the results from the data. The key is how the expected stochastic discount

factor responds to variations in current productivity. Though the plant-level optimization

problem does include a covariance of future values with the stochastic discount factor, the

response of the expected discount factor to variations in current productivity will be a key

element in the results that follow.

For the data-based stochastic discount factors reported in Table 1, we study how Et[β̃(At, At+1)]

varies with At. The results appear in the last column of that table.

A similar exercise is done with the results from the model based stochastic discount

factors. These results are reported in the last column of Table 2.

In the first two cases of the β̃(At, At+1) estimates, corresponding to ρA = 0.14 and

ρA = 0.45, the expected stochastic discount factor is increasing in current productivity. The

response is slightly negative at ρA = 0.84 as the negative coefficient on At+1 is given more

weight due to the higher serial correlation of the shock.

From the model based results, the expected stochastic discount factor is countercyclical

for the ρA = 0.84 case. This response is more countercyclical than in the empirical based

results. At ρA = 0.14, the stochastic discount factor is also procyclical in the model based

estimates.

These differences between data and model relate to earlier comments on the inability of

the standard RBC model to match interest rate movements. In the data, interest rates are

countercyclical, and thus the expected stochastic discount rate is procyclical. For leading
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models though, the interest rate is inversely correlated with output. The smoothing effects

of procyclical interest rates, key to Thomas (2002), is not operative in the data.

Figure 1 summarizes these results. At ρA = 0.14, displayed in the top panel, both

stochastic discount factors from the empirical specification based on the Euler equation and

the model specification based on the Chat-Coop model are procyclical. The data based

measure is more volatile than the model based one. For the case of ρA = 0.84, the stochastic

discount factors are both countercyclical but in this case the model-based one is more volatile.

For the empirical specifications in Table 1 based on observed interest rates, the market

returns on both T-bills and long-term bonds imply a strongly procyclical discount factor,

regardless of the assumed serial correlation. This effect is stronger than in either the Euler-

equation based empirical measures or model based measures.

These differences are important for our understanding of how much interest rate move-

ments ultimately smooth the response of plant-level and aggregate investment to productivity

shocks. If β̃ is positively correlated with the aggregate productivity shock, then the effect

of At on investment will be magnified. Alternatively, if β̃ is negatively correlated with At,

then aggregate shocks will be smoothed. They also highlight the significance of the serial

correlation of the aggregate shocks for the smoothing effects of interest rate movements.

the gap between the data and RBC model interest rate processes is well

understood. here we are going beyond that to make the case that this differ-

ence matters for the behavior of aggregate investment...

4 Results

Using these processes for the stochastic discount factor, we study the response of investment

to shocks. We do so first at the plant level and then in the aggregate.

To obtain these results, we solve (1) for different specifications of the stochastic discount

factor reported in Table 1. We then study investment choices at the plant-level and in

aggregate. Thus the investment choices depend on empirically relevant representations of

the stochastic discount factor.

For these simulations, we follow Cooper and Haltiwanger (2006) and assume α = 0.58,

ρε = 0.885 σε = 0.1 for the idiosyncratic shock process.6 The adjustment are costs given

6In Cooper and Haltiwanger (2006) the estimates of the aggregate and idiosyncratic shock processes
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Figure 1: Stochastic Discount Factors.
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This figure shows the relationship between data and model based stochastic discount

factors for two values of ρA.
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by Λ = 0.8, ν = 0.15, qs = 0.98. In the simulated data set, we follow 1000 plants for 500

periods.

4.1 Plant-level Implications

Table 3 reports moments at the plant-level for different interest rate processes.7 These

are the moments used in Cooper and Haltiwanger (2006) for the estimation of adjustment

cost parameters.8 There is an important point to gather from this table: these plant-

level moments are essentially independent of the representation of the stochastic discount

factor. Hence the parameter estimates from Cooper and Haltiwanger (2006), which assumes

a constant discount factor, are robust to analysis allowing a stochastic discount factor.

This does not imply though that the investment decision is independent of the specifi-

cation of the stochastic discount factor. Table 4 reports results of plant-level regressions on

current state variables for different measures of the stochastic discount factor and different

parameters for ρA.

There are three important results here. First, the response of investment to current

productivity depends on the specification of the stochastic discount factor. Second, this

response depends on ρA. Third, the response of investment to aggregate productivity is very

different for the data based characterization of the stochastic discount factor compared to

the model based version.

The response of investment to At is generally positive and significant. There are two

exceptions.

One exception is for the fixed β case and the low value of ρA. At ρA = 0.14, the

productivity process is closest to iid. This combined with the opportunity cost of investment,

Λ < 1, implies that it is more costly to invest when At is high without any apparent future

benefit. This negative response of investment to a productivity shock is overturned for larger

values of ρA and for the other specifications of the stochastic discount factor.

A second exception comes from the model based versions of the stochastic discount factor.

For the Chat-Coop case, investment at the plant-level is decreasing in At. This reflects the

correspond to profitability shocks, as technology, cost and demand shocks cannot be separately identified.
7In these tables, r(At) is the 30-day T-bill.
8In that analysis, the correlation of productivity and investment was used rather than the correlation of

plant-specific productivity and investment. In the data, these correlations are about the same.
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fact that the stochastic discount factor is expected to fall when productivity increases.

14



Preliminary and Incomplete 4 RESULTS

T
ab

le
3:

P
la

n
t-

le
ve

l
m

om
en

ts
fr

om
si

m
u
la

te
d

d
at

a

M
o
d
el

ρ
A

m
ea

n
(
I i K
i
)

F
ra

c
In

ac
ti

ve
F

ra
c

-
S
p
ik

e
+

S
p
ik

e
-

m
ea

n
(a

b
s(

I i K
i
))

C
or

r(
I i
,I
i,
−
1
)

C
or

r(
I i
,ε
i)

0.
14

0.
09

0
0.

87
0.

00
0

0.
13

0.
00

0
0.

72
-0

.1
3

0.
19

β
0.

45
0.

09
0

0.
87

0.
00

0
0.

13
0.

00
0

0.
72

-0
.1

3
0.

19

0.
84

0.
09

0
0.

88
0.

00
0

0.
12

0.
00

0
0.

72
-0

.1
3

0.
20

0.
14

0.
09

0
0.

87
0.

00
0

0.
13

0.
00

0
0.

72
-0

.1
3

0.
19

β̃
(A

t,
A
t+

1
)

0.
45

0.
09

0
0.

87
0.

00
0

0.
13

0.
00

0
0.

72
-0

.1
3

0.
19

(E
m

p
ir

ic
al

)
0.

84
0.

09
0

0.
88

0.
00

0
0.

12
0.

00
0

0.
72

-0
.1

3
0.

20

0.
14

0.
09

0
0.

87
0.

00
0

0.
13

0.
00

0
0.

72
-0

.1
3

0.
19

β̃
(A

t,
A
t+

1
)

0.
45

0.
09

0
0.

87
0.

00
0

0.
13

0.
00

0
0.

72
-0

.1
3

0.
19

(C
h
at

-C
o
op

)
0.

84
0.

09
0

0.
88

0.
00

0
0.

12
0.

00
0

0.
72

-0
.1

3
0.

20

0.
14

0.
09

0
0.

87
0.

00
0

0.
13

0.
00

0
0.

72
-0

.1
3

0.
18

r
(A

t)
0.

45
0.

09
0

0.
87

0.
00

0
0.

13
0.

00
0

0.
72

-0
.1

2
0.

18

0.
84

0.
09

1
0.

87
0.

00
0

0.
13

0.
00

0
0.

72
-0

.1
2

0.
18

15



Preliminary and Incomplete 4 RESULTS

Note that for all the models, investment is increasing in the idiosyncratic productivity

shock. This is partly due to the high serial correlation of that shock (ρε = 0.885) and the

fact that it does not influence the stochastic discount factor.

Tables 5 and 6 break the investment response into two components. The intensive margin

indicating the investment response of the adjusters and the extensive margin regarding the

choice to invest or not.

Comparing the intensive margin regressions in Table 5 with the results in Table 4, there

are a couple of points to note. For the fixed β case, the response to A is positive for the

adjusters. Once the selection effect from the extensive margin is removed, investment is

increasing in productivity.

For the intensive margin the response to K is almost zero. The explanation for the inverse

relationship between investment rates and the stock of capital, shown in Table 4 must come

from the extensive margin.

Comparing the extensive margin regressions in Table 6 with the linear probability model

results in Table 4, the negative effects of high capital on the adjustment choice is very strong.

The adjustment probability is increasing in At for all specifications except for the fixed β

case with low ρA and for all simulations using the Chat-Coop specification of the stochastic

discount factor. The opposing signs in the response of the extensive margin to changes in

At for the empirical and Chat-Coop specifications of β̃ (At, At+1) illustrates a key difference

in the interest rate channel for plant-level investment decisions between these two models of

the stochastic discount factor.

important to get into this extensive margin stuff. note from CHP that

spikes are pro cyclical. seems to be a feature of Thomas as well. so what are

GK saying is not consistent with Thomas and the data???

4.2 Aggregate Implications

so what can we link this all too in the aggregate data??? do more
to compare Tables 8 and 9. what about the data on the fraction of
adjustors correlated with A? so go back to that micro point... We

aggregate our simulated data to study the response of aggregate investment to productivity

shocks for different specifications of the stochastic discount factor. We also ask whether

empirically relevant movements in the stochastic discount factor smooth out fluctuations in
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Table 4: Plant-level investment regression on simulated data: Ii(A, εi, Ki)

Model ρA A εi Ki R2

0.14 -12.78 28.47 -0.46 0.36

(3.22) (0.26) (0.00)

β 0.45 1.36 29.18 -0.46 0.36

(2.32) (0.26) (0.00)

0.84 23.59 29.82 -0.43 0.36

(1.37) (0.27) (0.00)

0.14 24.58 28.40 -0.46 0.36

(3.22) (0.26) (0.00)

β̃ (At, At+1) 0.45 7.08 29.10 -0.46 0.37

(Empirical) (2.32) (0.26) (0.00)

0.84 13.76 29.74 -0.43 0.36

(1.37) (0.27) (0.00)

0.14 -1.97 28.63 -0.46 0.36

(3.21) (0.26) (0.00)

β̃ (At, At+1) 0.45 -4.70 28.86 -0.45 0.36

(Chat-Coop) (2.33) (0.26) (0.00)

0.84 -6.48 30.20 -0.44 0.36

(1.36) (0.27) (0.00)

0.14 80.89 27.44 -0.44 0.36

(3.23) (0.26) (0.00)

r (At) 0.45 91.40 27.14 -0.43 0.36

(2.34) (0.26) (0.00)

0.84 91.15 26.39 -0.41 0.36

(1.45) (0.26) (0.00)
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Table 5: Plant-level investment regression (Adjusters only): Ii(A, εi, Ki)

Model ρA A εi Ki R2

0.14 4.54 25.54 0.02 0.90

(2.57) (0.45) (0.01)

β 0.45 6.70 26.47 0.03 0.93

(1.59) (0.39) (0.01)

0.84 26.11 29.58 0.02 0.98

(0.56) (0.23) (0.01)

0.14 17.11 24.60 0.04 0.90

(2.59) (0.45) (0.01)

β̃ (At, At+1) 0.45 11.57 27.03 0.01 0.93

(Empirical) (1.58) (0.39) (0.01)

0.84 18.42 29.61 0.03 0.98

(0.50) (0.21) (0.00)

0.14 5.28 25.25 0.03 0.90

(2.51) (0.44) (0.01)

β̃ (At, At+1) 0.45 2.88 26.63 0.03 0.93

(Chat-Coop) (1.58) (0.39) (0.01)

0.84 2.80 29.67 0.03 0.99

(0.45) (0.19) (0.00)

0.14 32.77 24.14 0.05 0.89

(2.91) (0.44) (0.01)

r (At) 0.45 57.48 26.46 0.02 0.90

(2.40) (0.42) (0.01)

0.84 83.49 27.72 0.03 0.93

(1.71) (0.37) (0.01)
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Table 6: Linear probability regression using plant-level simulated data (extensive margin)

Model ρA A εi Ki R2

0.14 -0.67 1.25 -0.84 0.37

(0.15) (0.01) (0.01)

β 0.45 0.02 1.27 -0.84 0.37

(0.10) (0.01) (0.01)

0.84 1.00 1.26 -0.81 0.37

(0.06) (0.01) (0.01)

0.14 1.17 1.25 -0.84 0.37

(0.15) (0.01) (0.01)

β̃ (At, At+1) 0.45 0.29 1.26 -0.84 0.37

(Empirical) (0.10) (0.01) (0.01)

0.84 0.58 1.24 -0.79 0.37

(0.06) (0.01) (0.01)

0.14 -0.11 1.26 -0.85 0.37

(0.15) (0.01) (0.01)

β̃ (At, At+1) 0.45 -0.29 1.26 -0.83 0.37

(Chat-Coop) (0.10) (0.01) (0.01)

0.84 -0.33 1.27 -0.81 0.37

(0.06) (0.01) (0.01)

0.14 3.86 1.20 -0.82 0.37

(0.15) (0.01) (0.01)

r (At) 0.45 4.26 1.17 -0.79 0.38

(0.10) (0.01) (0.01)

0.84 3.97 1.11 -0.76 0.37

(0.06) (0.01) (0.01)
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aggregate investment due to the non-convexities at the plant level. We also study the cyclical

patterns of investment on the extensive (fraction of plants investing) and intensive margins

(investment rate conditional on investment).

4.2.1 Basic Moments

Table 7 presents some basic correlations from the data as well as aggregated simulated data

from the model. For the data, productivity is measured as describe in the appendix. The

other measures are constructed from the Census Bureau’s Annual Survey of Manufacturers

(ASM) as reported and described in Gourio and Kashyap (2007). This data source is used

because it provides important evidence for this analysis regarding the extensive margin

investment decisions of manufacturing establishments. The reported statistics are based on

annual data from 1974 to 1998.

The correlations based on the data reveal positive, but small, correlations between pro-

ductivity and most of the aggregate series. The correlation between productivity and both

aggregate investment and the aggregate investment rate are modestly positive across all

filtering specifications. The correlation between productivity and the fraction of establish-

ments with investment rates greater than 20 percent is approximately 0.2 across all filtering

specifications. The correlation between productivity and the capital stock is near zero when

λ is 7 and 100, and negative when λ is 100,000.

The correlation between productivity and investment in the simulated results depends

critically on the specification of the stochastic discount factor: it is procyclical under the

empirical models of the stochastic discount factor and countercyclical with the model-based

specifications.

For the data-based version of the stochastic discount factor, either from β̃ (At, At+1)

or directly from observed interest rates, investment is positively correlated with aggregate

productivity. As noted earlier in the discussion of Table 1, increases in productivity increase

β̃ when ρA = 0.14 and ρA = 0.45. Therefore, the investment response to changes in At is

magnified by the changes in the stochastic discount factor. For ρA = 0.84, an increase in At

does lead to a fall in β̃ (At, At+1), but the correlation between productivity and investment

remains positive.

The results are quite different in the case of the model-based stochastic discount factor.

Here investment is negatively correlated with the productivity shock. This comes from
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the interaction of the opportunity cost of adjustment and the fact that for ρA = 0.45 and

ρA = 0.84, β̃ (At, At+1) falls as At increases.

These patterns are clearly sensitive to both the specification of the stochastic discount

factor and the choice of ρA. For the fixed discount factor and a low value of ρA, investment

is negatively correlated with the aggregate shock, both in terms of the investment rate and

in the fraction of adjusters. This, as explained earlier, comes from the opportunity cost of

adjusting.

These differences in the determination of the stochastic discount factor carry over to

other moments. For the empirically based measured of β̃ (At, At+1), the fraction of adjusters

is positively correlated with the aggregate productivity shock. This correlation is negative

for the model based versions. While there is a difference in the sign on the extensive mar-

gin, the mean investment rate for those who adjust is positively correlated with A in both

specifications of β̃ (At, At+1).

The cyclical dynamics of the extensive margin may be a critical factor in determining

whether interest rates smooth or amplify investment. The evidence from the data suggests

that the extensive margin is procyclical with respect to productivity. Comparing results

from the models, the extensive margin is procylical with respect to productivity for the

empirical-based stochastic discount factor and countercylical for the model-based stochastic

discount factor across all filtering specifications.

Table 8 reports regressions of the future aggregate capital stock on the current state

for different values of ρA for different values of the stochastic discount factor. Here we see

that the coefficient on current productivity is positive for the empirically based stochastic

discount factor but negative for the model based stochastic discount factor. Table 9 is the

same exercise on actual data. The coefficient on At is positive throughout, consistent with

the data based version of the stochastic discount factor.

Figure 2 highlights the importance of the stochastic discount factor for aggregate invest-

ment. This is for the baseline non-convex adjustment cost case. As in Table 7, the two

investment series respond very differently to variations in aggregate productivity. In many

cases, the model and empirically based versions of the stochastic discount factor leads to

opposite movements of aggregate investment in response to productivity shocks. This is,

again, consistent with the differences reported at the plant-level in Table 4.

Figure 3 illustrates the role of the stochastic discount factor for the cyclical dynamics of
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Table 7: Correlation of key variables with aggregate productivity (A)

Data or Aggregate variables Extensive margin Intensive margin

Model λ ρA I K I
K

Fract. of adjusters mean( Ii
Ki
| Ii
Ki
> 0.2)

7 0.14 0.08 -0.02 0.12 0.14 NA

Data 100 0.45 0.12 0.03 0.14 0.22 NA

100000 0.84 0.05 -0.36 0.23 0.19 NA

7 0.14 -0.51 0.03 -0.50 -0.55 0.61

β 100 0.45 -0.05 0.15 -0.06 -0.09 0.54

100000 0.84 0.55 0.73 0.43 0.46 0.09

7 0.14 0.61 0.15 0.58 0.62 0.01

β̃ (At, At+1) 100 0.45 0.31 0.26 0.27 0.29 0.41

(Empirical) 100000 0.84 0.47 0.69 0.36 0.36 0.47

7 0.14 -0.19 0.10 -0.20 -0.23 0.49

β̃ (At, At+1) 100 0.45 -0.31 0.04 -0.30 -0.36 0.65

(Chat-Coop) 100000 0.84 -0.27 -0.22 -0.24 -0.33 0.83

7 0.14 0.79 0.10 0.76 0.78 -0.74

r (At) 100 0.45 0.73 0.36 0.69 0.70 -0.80

100000 0.84 0.62 0.71 0.52 0.53 -0.78

For the data results, the method used to construct the productivity data is described in the appendix.

The other measures are constructed from the Census Bureau’s Annual Survey of Manufacturers (ASM) as

reported and described in Gourio and Kashyap (2007). The reported statistics are based on annual data

from 1974 to 1998. The other results are based on simulated data from the model. The threshold used

for the extensive and intensive margins is an investment rate (I/K) greater than 20 percent in absolute

value.
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Table 8: Aggregate capital regression on simulated data: Non-Convex Adjustment Costs

Model ρA At Kt R2

0.14 -0.33 0.71 0.64

(0.02) (0.03)

β 0.45 -0.00 0.77 0.60

(0.02) (0.03)

0.84 0.63 0.50 0.96

(0.02) (0.01)

0.14 0.60 0.58 0.72

(0.03) (0.02)

β̃ (At, At+1) 0.45 0.18 0.72 0.68

(Empirical) (0.02) (0.03)

0.84 0.35 0.59 0.90

(0.02) (0.02)

0.14 -0.10 0.78 0.60

(0.02) (0.03)

β̃ (At, At+1) 0.45 -0.12 0.77 0.63

(Chat-Coop) (0.02) (0.03)

0.84 -0.09 0.74 0.66

(0.01) (0.03)

0.14 2.22 0.37 0.92

(0.03) (0.01)

r (At) 0.45 2.59 0.40 0.95

(0.04) (0.01)

0.84 2.49 0.48 0.98

(0.04) (0.01)

23



Preliminary and Incomplete 4 RESULTS

Figure 2: Aggregate Investment with Non-convex Adjustment Costs.
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This figure shows aggregate investment and the aggregate shock for the baseline

model of non-convex adjustment costs. The top panel is for the case of ρA = 0.14 and

the bottom panel is for the case of ρA = 0.84.
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Table 9: Aggregate Capital Regression: Actual Data

ρA Constant At Kt R2

0.14 -0.00 0.23 0.23 0.16

(0.00) (0.08) (0.12)

0.45 -0.00 0.19 0.74 0.54

(0.00) (0.09) (0.09)

0.84 -0.00 0.13 0.98 0.90

(0.00) (0.06) (0.05)

the extensive margin. Under the baseline non-convex adjustment cost case with ρA = 0.14,

the fraction of establishment with investment spikes ( I
K
> 0.20) is positively correlated with

productivity in the specification using the data-based stochastic discount factor. In other

words, most of the upward movements in the fraction of establishments with spikes are

associated with upward movements in productivity. When using the model-based stochastic

discount factor, there is a slightly negative correlation. Most of the downward movements in

the extensive margin for this case are associated with high levels of productivity. A similar

pattern is observed in the lower panel, which displays the same models under a high value

of the serial correlation of the productivity shock (ρA = 0.84). The low points for the model

with the data-based stochastic discount factor occur with low levels of productivity, while

the low points for the model with the model-based stochastic discount factor occur with high

levels of productivity. These figures illustrate the correlations shown in Table 7, where the

correlations observed in the data are of the same direction as the model with the data-based

stochastic discount factor.

4.2.2 Role of Adjustment Costs

not sure this belongs here. have we already made our point that the stochastic

discount factor matters? are we vulnerable as we do not reproduce T or KT

in any of our cases? or fine as the AC are different enough. maybe talk

about the differences in that specification... Returning to the point emphasized in

Thomas (2002), Khan and Thomas (2003) and Khan and Thomas (2008), we can use this
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Figure 3: Extensive margin: relationship between productivity and the fraction of adjusting

establishments
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This figure shows aggregate productivity and the fraction of adjusting firms for the

baseline model of non-convex adjustment costs under two different specifications of the

stochastic discount factor. The top panel is for the case of ρA = 0.14 and the bottom

panel is for the case of ρA = 0.84.
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model to study the smoothing effects of the data based and model based stochastic discount

factors. To do so, we compare the aggregate properties of investment in our baseline model

with non-convex adjustment costs with the aggregate behavior of investment in a model

with no adjustment costs. From the results of this literature, one would predict that the

non-convexity does not matter in the aggregate.

We base this comparison in part on the evolution of the aggregate capital stock. If the

non-convexity at the plant-level has no aggregate implications, then the state dependent

evolution of the capital stock should be the same as in the model without any adjustment

costs. This is consistent with the finding in Thomas (2002), Khan and Thomas (2003) and

Khan and Thomas (2008).

For this exercise, we use the model based stochastic discount factor from the model of

Chatterjee and Cooper (1993). That model has no adjustment costs. Motivated by the

findings in Thomas (2002), Khan and Thomas (2003) and Khan and Thomas (2008), this

is the appropriate discount factor to use under the null hypothesis that the non-convex

adjustment costs have no aggregate implications.

Our results for the case of no adjustment costs are summarized in Table 10. This is

comparable to Table 8, which is based on simulated data from a model with non-convex

costs at the plant-level.

Comparing these tables, it is clear that the results are very different for all of the speci-

fications of the stochastic discount factor. This is perhaps not as surprising for the fixed β

treatment since smoothing by aggregation is not feasible.

Even for the model based specification of the stochastic discount factor, the results with

the non-convex adjustment costs are far from those without any adjustment costs. The

response of the future capital stock to a variation in current productivity is negative for

all values of ρA in the case of non-convex adjustment costs and the model based stochastic

discount factor. These responses are all positive in the case of no-adjustment costs.

Moreover, the results are quite different for the empirically based stochastic discount fac-

tor. There is no evidence here that interest rate movements smooth out the non-convexities

at the plant-level so that aggregate capital movements are essentially identical to those in a

model without adjustment costs.

The differences in aggregate investment under the different combinations of adjustment

costs and stochastic discount factors are further illustrated in Figures 4 and 5. Not surpris-
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Table 10: Aggregate capital regression on simulated data: no adjustment costs

Model ρA At Kt R2

0.14 0.77 0.24 0.68

(0.03) (0.03)

β 0.45 0.35 0.84 0.73

(0.02) (0.03)

0.84 0.10 1.81 0.95

(0.01) (0.03)

0.14 0.08 3.11 0.90

(0.01) (0.05)

β̃ (At, At+1) 0.45 0.19 1.38 0.83

(Empirical) (0.02) (0.03)

0.84 0.18 1.20 0.91

(0.02) (0.03)

0.14 0.40 1.03 0.68

(0.03) (0.04)

β̃ (At, At+1) 0.45 0.60 0.37 0.66

(Chat-Coop) (0.03) (0.03)

0.84 0.73 0.03 0.54

(0.03) (0.02)

0.14 0.01 7.85 0.98

(0.01) (0.05)

r (At) 0.45 0.01 8.42 0.99

(0.00) (0.04)

0.84 0.01 6.81 1.00

(0.00) (0.03)
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ingly, aggregate investment is considerably more volatile in the absence of adjustment costs.

The role of adjustment costs is to dampen the response of investment to the aggregate shock.

These differences are apparent for both values of ρA in Figure 4.

Even for the model based version of the stochastic discount factor in Figure 5, these differ-

ences remain. There is no basis for the conclusion that these two models are observationally

equivalent at the aggregate level.

It is clear that the findings of Thomas (2002), Khan and Thomas (2003) and Khan and

Thomas (2008) do not hold in our environment. This is partly due to the use of data based

stochastic discount factor and partly due to differences in the specification of adjustment

costs.9

5 Conclusion

This paper studies the implications of interest rate movements on investment. In particular,

we highlight how changes in interest rates influences the effects of productivity shocks on

investment. We see that the smoothing effects of interest rates depends on the determination

of that process. If, as we have emphasized here, the state dependent discount factor is

determined from the data, then there is little smoothing of investment due to interest rate

movements.

As this work proceeds, we will turn to an analysis of monetary policy which presumably

underlies the interest rate process uncovered in the data. We can use our model to see

how alternative monetary policies can influence investment behavior. Our results indicate

an important channel for monetary policy: influencing the amount of plant-level lumpy

investment that is smoothed through interest rate movements. When the lumpiness is not

smoothed, the impact of monetary policy can itself be state-dependent.

9Relative to our model, Thomas (2002) has a lump-sum non-convex adjustment cost rather than the

opportunity cost of investment. Further, that model has no quadratic adjustment costs and no irreversibility.

There are no iid shocks to productivity but instead there are plant-specific stochastic adjustment costs. The

numerical analysis assumes ρA = 0.9225. The plant’s stochastic discount factor comes from the solution of

the stochastic general equilibrium model. Understanding which of these model components is the source of

the differences in results remains an open question.
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6 Appendix: TFP process

missing a reference here to sw99
need to say how we got At in the first place.. The measure of total factor

productivity used in this analysis is constructed as a Solow residual following Stock and

Watson (1999). The calculation includes nonfarm real GDP (source: BEA), nonfarm payroll

employment (source: BLS), real nonresidential private fixed capital stock (source: BEA and

authors’ calculations), and a labor share of 0.65. The data sample is annual frequency from

1948 to 2008.

Our analysis is focused on business-cycle dynamics, so here we abstract from long-term

growth in TFP by detrending the data. Various approaches have been used in the literature

for detrending, so we employ three different detrending specifications to examine the sen-

sitivity of the results. The first approach focuses specifically on business cycle frequencies

(between 3 and 8 years). For this case, we detrend using the HP filter with the λ parameter

set to 7, which closely approximates a band-pass filter on annual data. The second approach

is to remove a linear trend from the data, which we approximate by setting the HP filter

parameter for λ to 100,000. The third approach uses an intermediate value of λ that is

commonly used to filter annual data, λ = 100.

The parameters of the TFP process are estimated based on a log-normal AR(1) specifi-

cation.

logAt = ρA logAt−1 + εA,t, εA ∼ N(0, σ2
εA

) (8)

Estimates of the shock process parameters are displayed in Table 11 for the three different

detrending specifications. The estimate of serial correlation in TFP, ρA, is very sensitive to

the detrending specification. If focusing on business cycle frequencies, λ = 7, there is little

serial correlation in detrended TFP. On the other hand, detrended TFP has a much higher

serial correlation when approximating the removal of a simple time trend (λ = 100, 000).

We consider the process parameter estimates from all three detrending specifications in

our analysis to examine the role of the detrending assumption in modeling the relationship

between interest rates and investment decisions.
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Table 11: Parameter estimates for Solow-residual technology process

λ ρA σεA

7 0.14 0.012

100 0.45 0.015

100000 0.84 0.018

References

Beaudry, P. and A. Guay, “What do interest rates reveal about the functioning of real

business cycle models?,” Journal of Economic Dynamics and Control, 1996, 20 (9-10),

1661–1682.

Caballero, R.J. and E.M.R.A. Engel, “Explaining investment dynamics in US

manufacturing: a generalized (S, s) approach,” Econometrica, 1999, 67 (4), 783–826.

Chatterjee, S. and R. Cooper, “Entry and exit, product variety and the business

cycle,” Technical Report, National Bureau of Economic Research 1993.

Cooper, R. and J. Haltiwanger, “On the Nature of the Capital Adjustment Costs,”

Review of Economic Studies, 2006, 73, 611–34.

Gourio, F. and A. Kashyap, “Investment spikes: New facts and a general equilibrium

exploration,” Journal of Monetary Economics, 2007, 54, supplement, 1–22.

Khan, A. and J.K. Thomas, “Nonconvex factor adjustments in equilibrium business

cycle models: do nonlinearities matter?,” Journal of monetary economics, 2003, 50 (2),

331–360.

and , “Idiosyncratic shocks and the role of nonconvexities in plant and aggregate

investment dynamics,” Econometrica, 2008, 76 (2), 395–436.

King, R.G., C.I. Plosser, and S.T. Rebelo, “Production, growth and business cycles::

I. The basic neoclassical model,” Journal of Monetary Economics, 1988, 21 (2-3),

195–232.

Stock, J.H. and M.W. Watson, “Business cycle fluctuations in US macroeconomic time

series,” Handbook of Macroeconomics, 1999, 1, 3–64.

Thomas, Julia, “Is Lumpy Investment Relevant for the Business Cycle?,” Journal of

Political Economy, 2002, 110, 508–34.

31



Preliminary and Incomplete REFERENCES

Figure 4: Effects of Adjustment Costs on Aggregate Investment: Data Based β̃
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This figure shows aggregate investment and the aggregate shock for the baseline

model of non-convex adjustment costs and for the case of no adjustment costs. The

top panel is for the case of ρA = 0.14 and the bottom panel is for the case of ρA = 0.84.

In both cases, the stochastic discount factor is based on the data.
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Figure 5: Effects of Adjustment Costs on Aggregate Investment: Model Based β̃
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This figure shows aggregate investment and the aggregate shock for the baseline

model of non-convex adjustment costs and for the case of no adjustment costs. The

top panel is for the case of ρA = 0.14 and the bottom panel is for the case of ρA = 0.84.

In both cases, the stochastic discount factor is based on the model.
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