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Abstract

We examine how growth in wages and residential rents are affected by land supply con-

straints. Our city model incorporates production externalities and allows firms and workers

to choose location as well as intensity of land use. When business structures cannot adjust

(short run), cities with more severe constraints on the supply of urban land see higher growth

in wages and rents in response to a positive shock to the demand for urban land. But, when

business structures can adjust (long run), cities with more severe constraints experience

lower growth in wages and rents as they are less able to exploit the positive external effects

of greater employment density.
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1 Introduction

What is the role of geography for the value of urban land? Urban economics suggests one

answer. Imagine a location that is severely constrained by geography and cannot easily

support a large population. Such a location cannot benefit as much from production exter-

nalities that are at the heart of urban agglomerations. All else the same, such a location

will have lower incomes and land prices (or not develop into a city at all). Although it is

challenging to tease out the effects of geography alone from the myriad of other factors that

affect city incomes and land prices, a growing list of creative studies have unearthed evidence

that seems consistent with this prediction. Bleakely and Lin (2012), Nunn and Puga (2010),

Rosenthal and Strange (2008) and Combs, Duranton, Gobillon, and Roux (2010) show that

geography that allows easier expansion (horizontal or vertical) tend to have higher wages

(and, by implication, land rents).1

There is also an alternative view grounded in basic demand-supply analysis. When

geography limits the physical expansion of a city, an increase in the demand for urban land

results (all else the same) in a larger increase in the price of land in the city. This view also

appears to be borne out in studies that utilize the variation in the growth rate of house prices

in the recent boom episodes. Glaeser, Gyourko, and Saiz (2008) and Huang and Tang (2013)

find evidence that houses prices responded more strongly to demand shocks in cities where

supply of urban land is less elastic in terms of the Saiz (2010) measure of undevelopable

land.

On the face of it, these two perspectives —equally compelling in their own way— suggest

1Saiz (2010) finds that cities with less developable land have higher house prices in 2000. However, his
sample only includes metro areas with population in excess of 500, 000 in 2000 and therefore does not account
for smaller urban areas that might have failed to grow because of physical constraints and currently have low
incomes and land prices. In Bleakely and Lin (2012), the size of the upstream watershed area of portage cities
has a positive effect on population density and the hourly wage of workers in year 2000. A larger watershed
area is a proxy for ease of expansion because it means that the headwaters of the river, which is typically in
a hilly or a mountainous region, is more remote from the city. Nunn and Puga (2010) show that ruggedness
of countries has adverse effects on country incomes in year 2000 other than in Africa (where ruggedness
afforded protection from the slave raids). Rosenthal and Strange (2008) and Combs, Duranton, Gobillon,
and Roux (2010) show that properties of the soil that lower construction costs are positively correlated with
current incomes and use such soil properties as instruments to identify agglomeration effects.
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opposite effects of geography on the value of urban land. In this paper, we reconcile these

seemingly contradictory views in the context of a spatial city model with production exter-

nalities. Our findings can be summarized in Figure 1. The horizontal axis gives the location

of land relative to the city center and the vertical axis has residential land rents. Consider

two cities that have the same fundamentals and the same initial city size S. Residential rent

gradient for the two cities are shown by the solid downward sloping line (rents are declin-

ing from the city center). Suppose a shock increases the demand for urban land in both

cities. This could be the result of productivity growth in these cities or aggregate population

growth. In either case, more people want live in these cities. One city can expand at a fixed

cost (unrestricted city U) but the other cannot expand beyond point S (restricted city R).

The dashed line is the position of the new rent gradient for the restricted city and shows

that the increase in demand leads to an increase in residential rents in all locations.

The shift in the rent gradient of the unrestricted city may be either below or above

the dashed line. The basic demand-supply view —which ignores production externalities—

would say that the shift will be smaller (below the dashed line) because the expansion of

the city boundary brings more land into the city and reduces demand pressure on existing

city locations. With production externalities, whether the shift is smaller or bigger depends

on the strength of the external effect. Specifically, suppose that output per unit of land in a

given location is proportional to zγnθbψ, where z is a measure of proximity to other workers

in that location (described in more detail later in the paper) and n and b are employment

and building densities in that location. Then, in the long run (when both employment and

structures are variable), a sufficient condition for the rent gradient for city U to be above

the gradient for city R is for the production externality parameter γ to be as large or larger

than the share of land in production (1− θ−ψ). In the short run (when only employment is

variable and commercial structures are fixed), the sufficient condition for the rent gradient

for city U to be above the gradient for city R is for γ to be as large or larger than (1 − θ),

or equivalently, for the externality parameter to be as large or larger than sum of the shares

of land and structures in production.
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To understand the intuition behind these results, note, first, that the unrestricted city

will absorb more workers than the restricted city. Then, for the rent gradient to rise more

in the unrestricted city, wages need to rise more in the unrestricted city (so that utility is

the same in both cities). For this to happen, the production externality needs to be strong

enough to overcome the diminishing returns to labor that comes from the scarce factors

of production. In a spatial model, land at different distances from the city center are not

perfect substitutes and the amount of land at any given distance from the center is fixed. If

the number of workers in the city doubles, the business sector as a whole cannot double its

existing usage of land. What it can do is bring more land into the business sector but this

land is not as productive and it can bid only a limited amount away from workers who use

it for residential purposes. In the long run, land is the only scare resource; in the short run,

land is scarce and structures are fixed. The more important these scarce or fixed factors are

to production, the stronger the externality effect needs to be for wages to rise more as more

workers move into the unrestricted city.

Figure 1

 The Effects of Supply Elasticity on Urban Wages and Residential Rents Inclusive 
of Production Externality Effects 
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The quantitative evidence regarding these parameters suggests that γ is larger than

(1 − θ − ψ), or, equivalently, γ is larger than the share of land in business costs. Thus,

when all non-land factors of production can be varied, the restricted city is likely to see

lower growth in wages and residential land rents. The evidence on the share parameters also

suggests that γ is less than (1− θ). Therefore, in the short run, when commercial structures

cannot immediately respond to worker inflows, wage and residential land rent growth will

be higher in the restricted city.

Thus, our model is able to reconcile the seemingly contradictory findings in the two

strands of the empirical literature cited earlier. Studies that focus on recent episodes of

rapid growth in house prices will find that supply restrictions contribute to higher wages and

house prices as the time period in question is relatively short. In contrast, studies that focus

on the long run will find that supply restrictions lower wages and house prices.

One point to highlight is the fact that the unrestricted city ends up with higher wages in

the long run does not imply that cities are in an unstable equilibrium —where rising wages

continually attract workers (from other locations) until all workers live in one giant city.

Stability depends on more than just production parameters because workers need land for

residential purposes as well and, empirically, the residential demand for urban land is strong

enough to ensure stability (this point will be clear later in the paper).

The paper is organized as follows. Section 2 describes the environment. Sections 3

and 4 develop the equilibrium implications of this environment for the location decisions

and intensity of land use by firms and workers. Section 5 analyzes how an urban growth

boundary affects business and residential rents and other variables of interest when there

is an increase in the demand for urban land, and discusses the empirical evidence on the

magnitude of the externality and land-intensity effects. Section 6 concludes.
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2 The Environment

A natural environment to explore the effects of land supply constraints on city incomes and

land values is one in which businesses and workers compete for land and there is a positive

production externality that makes firms want to locate close to one another other. We use

the model developed in a companion paper (Chatterjee and Eyigungor (2014)). Our model,

which is squarely in the tradition of Mills (1969), Muth (1969) and Alonso (1964), has

important precursors (Lucas and Rossi-Hansberg (2002) and Fujita and Ogawa (1982)) but

is novel in its modeling of the production externality. This results in a tractable structure

suitable for comparative statics analysis.

Space is modeled as a flat plain extending in all directions with a point marked off as the

city center. We focus on allocations that are symmetric relative to the center, so a location

is described fully by its distance r from the center.

Utility function of a worker depends on the consumption of the single numeraire good

avaliable in this economy and on the service flow from land. A worker who resides in location

r has utility

U = cβ(r)l(r)1−β, β ∈ (0, 1), (1)

where l(r) is the consumption of land in location r and c(r) is consumption at location r.

A firm has a technology to produce the single consumption good. The production function

of a firm that uses one unit of land at location s is

Y (s) = Az(s)γnα(s), α ∈ (0, 1), γ > 0, (2)

where n(s) is the number of workers per unit of land at location s, A is a TFP term that is

common to all firms in the city, and z(s) is a variable—defined more precisely below—that

captures how many other workers are in close proximity to the firm. We do not explicitly

model factors of production other than land and labor. We show later in the paper that when
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structures are explicitly included as another factor of production, production possibilities

effectively reduce to (2) if structures can be freely adjusted. In that section we examine how

our results change when structures are explicitly included but cannot be varied in the short

run.

A key assumption is that the proximity between any two firms is measured by the sum of

the distance of the two firms from the city center. In other words, if one firm is located on a

circle of radius r and the other firm is located on a circle of radius s, the distance of the firms

to each other is simply (r+ s). The assumption that distance between two firms is measured

by the sum of the lengths to the city center is reasonable if communication between workers

in different firms requires travel to a central meeting place and the road system is radial. A

second justification of this assumption is given below.

Let N(s) denote the number of workers employed by firms at all locations s. Then, for

a firm at location r, the level of access to workers at other firms is

z(r) =

∫ ∞
0

2πs exp (−δ (r + s))N(s)ds.

Here δ is a parameter that governs how quickly communication possibilities attenuate with

distance. Since z(0) =
∫∞

0
2πs exp (−δs)N(s)ds, the above definition implies

z(r) = z(0) exp (−δr) . (3)

Thus the measure of other workers that a business can communicate with declines exponen-

tially at the rate δ with distance from the city center.

As will become evident, (3) is the reason our model predicts that all density and price

gradients follow exponential functions and is the reason why the model is tractable. Given

the importance of (3), we might ask, what other distance measures generate (3)? If we

denote the general distance function as ν(r, s) and require that ν(r, s) = ν(s, r) (symmetry),

then it is straightforward to show that any symmetric distance function that generates (3)
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must be a linear transform of r + s.2 Thus a second justification for our distance measure

is that it is the only (symmetric) measure that is consistent with (3) and, therefore, with

exponential density and price gradients.

There is a technology for commuting. This technology allows workers to commute to any

firm that is located on the straight line that connects the worker’s residential location to the

city center. We follow Anas, Arnott, and Small (2000) and Lucas and Rossi-Hansberg (2002)

and assume that a worker who resides in location s and commutes to a firm at location r

has exp(−κ|s− r|) unit of time to devote to production, where κ > 0.3

There is also a technology for converting land from its natural state into land that can

be used by workers and firms. The cost of converting a unit of natural land into developed

land is d units of the consumption good.

Finally, following convention, it is assumed that all land in the economy is owned by

entities outside of the model. These entities decide whether to convert any given unit of

natural land into developed land and then rent the developed land to workers and firms.

3 Monocentric City with Endogenous Business Dis-

trict

In this paper, we focus on the case where the city is monocentric, meaning that there is central

business district of positive radius in which all production is concentrated, with workers living

2For the general distance function z(r) =
∫ S

0
exp(−ν(r, s))N(s)ds. We require that z(r) = z(0) exp(−δr),

where δ is some positive constant. Then z(0) =
∫ S

0
exp(−ν(r, s) + δr)N(s)ds. Since this relationship must

hold for any r, it follows that ν(r, s) must be of the form a + δr + f(s). From symmetry a + δr + f(s) =
a+ f(r) + δs, which in turn implies f(s)− f(r) = δ · (s− r). Hence ν(r, s) = A+ δ · (r + s).

3As noted in Anas, Arnott, and Small (2000), this assumption is key to obtaining an exponentially
declining land rent and population density function without making counterfactual assumptions on the
structure of preferences for land. Coupled with our assumption regarding how proximity between firms is
calculated, we can extend the negative exponential form to commercial rents as well as employment density.
Note also that, to a first-order approximation, the (net) income of a commuter is w(r)[1 − κ|s − r|], which
corresponds to the common assumption that the commuting cost is proportional to the hourly wage and
linear in the distance traveled.

7



in the surrounding residential ring. Empirically, this is the pattern most relevant for US cities

in that the fraction of land devoted to business use is generally declining from the city center,

although it is not quite 1 in the business district and rarely does it become 0 away from it.

Monocentricity imposes a restriction on parameter values. To derive this restriction,

let w(r) be the wage paid by a firm at location r and let qF (r) be the maximum rent

a firm would be willing to pay for a unit of land at location r. This quantity is simply

Az(r)γn∗(r)α − w(r)n∗(r), where n∗(r) is the optimal choice of n conditional on locating at

r. Then,

qF (r) = [(1− α)/α]
[
αAz(r)γw(r)−α

]1/(1−α)
. (4)

The maximum rent a firm is willing to pay depends positively on the location’s productivity

and negatively on the location’s wage.

Turning to workers, we let qH(r, s) be the maximum rent a worker would be willing to pay

for a unit of land at location r, given that he will work at location s. Conditional on paying

qH(r, s) in rent, a worker’s optimal utility is ββ(1− β)1−βw(s) exp(κ|s− r|)qH(r, s)−(1−β). If

U is the maximum utility a worker can obtain from locating elsewhere,

qH(r, s) = (1− β) ββ/(1−β)(w(s) exp (κ|s− r|)/U)1/(1−β). (5)

Thus, the maximum rent a worker is willing to pay for land at r depends positively on his

wage and negatively on U .

For the city to be monocentric, there must exist a boundary SF < S such that all locations

r ∈ [0, SF ) are devoted to production and all locations r ∈ (SF , S] are devoted to residential

use. Since workers must be indifferent between working within the business district,

w(r) = w(0) exp (−κr) for r ∈ [0, SF ]. (6)

8



Using this information in n∗(r) and using the expression for z(r) in (3) yields

qF (r) = qF (0) exp

(
−δγ − κα

1− α
r

)
for r ∈ [0, SF ), (7)

which is declining in r provided δγ − κα > 0.

Given that workers earn the same regardless of where they work, the maximum rent a

worker is willing to pay for land at location r ∈ [0, S] and still get a utility of U is

qH(r) = (1− β) β
β

1−β

(
w(0) exp (−κr)

U

) 1
1−β

= qH(0) exp

(
− κ

1− β

)
for r ∈ [0, S]. (8)

For the monocentric structure to be an equilibrium outcome, the two bid rents must be the

same at the boundary of the CBD, and the slope of the firm’s bid rent function must be

steeper than the slope of the worker’s bid rent function. The slope of the worker’s bid rent

function at SF is [−κ/(1 − β)]qH(SF ) and the slope of the firm’s bid rent function at SF

is [(κα − δγ)/(1 − α)]qF (SF ). Since at the boundary of the CBD qH(SF ) = qF (SF ), the

necessary slope condition boils down to:

κ <
(1− β)γδ

(1− βα)
. (9)

Note that since both α and β are less than unity, (9) implies that γδ > ακ. Therefore,

the firm’s bid rent function is downward sloping, as assumed.4 Figure 2 summarizes the

situation.

4 Equilibrium

We imagine a system of cities, each of which delivers utility U to its residents. In this

section, we find the equilibrium population (P ) and equilibrium size (S) of a city that has

4As discussed in Chatterjee and Eyigungor (2014), this environment is consistent with two different
urban forms, depending on parameter values. If condition (9) is violated, firms and workers will co-locate
the employment will be dispersed over the entire city.
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Figure 2
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productivity A, can expand at cost d and delivers utility U .

The determination of equilibrium can be broken down into two parts. In the first part, P

and S are taken as given and the equilibrium employment and residential density functions

along with the equilibrium wage and rent functions are determined as functions of P and

S (the equilibrium will also imply a utility level U in the city). In the second part, we

will endogenize S also (which will be determined by the condition that says the rent at the

boundary equals to the expansion cost d) and so U and S are determined as functions of P

and d.

The task of determining the various equilibrium functions is made very simple by the

fact that all these functions are negative exponentials, where the only unknowns are the

values of these functions at r = 0 (the city center). Furthermore, these unknown values are

all determined once n(0) and z(0) are determined. To see this, note that w(0) is simply the
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marginal product of labor at the city center. Therefore

w(0) = αAz(0)γn(0)α−1. (10)

And qF (0) is output at 0 minus the wage bill at 0 (since all “surplus” must go to the owners

of land) and so,

qF (0) = [(1− α)/α]w(0)n(0) = (1− α)Az(0)γn(0)α. (11)

To determine qH(0), we use the fact that the bid rents for businesses and workers are the

same at SF , which implies

qF (0) exp(−[δγ − κα]/[1− α]SF ) = qH(0) exp(−[κ/(1− β)]SF ). (12)

Therefore

qH(0) = qF (0) exp

(
κ− δγ + βδγ − βκγ

(1− α)(1− β)
SF

)
. (13)

While this equation depends on SF , we will show below that SF is, in fact, pinned down

by S alone (recall that we are taking both P and S as parametrically given in this part).

Therefore, the first part of the equilibrium problem boils down to simply determining n(0)

and z(0).

To proceed, we observe that the expression for n∗(r), along with the expressions for w(r)

in (6) and z(r) in (3) gives

n(r) = n(0) exp

(
−δγ − κ

1− α
r

)
for r ∈ [0, SF ]. (14)

The values of n(0) and z(0) are determined by invoking two market-clearing conditions.

First, there is the labor-market-clearing condition. To develop this condition, we note that

the total supply of labor time available at the border of the CBD, taking into account the
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time lost in commuting, is
∫ S
SF

[2πr/l(r)]e−κ(r−SF )dr. If the employment density at a CBD

location r is n(r), the labor time needed at the border of the commercial district to fulfill

this demand is eκ(SF−r)n(r). Therefore, the total time needed at the border of the CBD to

satisfy total labor demand inside the commercial district is
∫ SF

0
2πrn(r)eκ(SF−r)dr. Equality

of labor demand and supply then requires

∫ SF

0

2πrn(r) exp (κ(SF − r)) dr =

∫ S

SF

2πr

l(r)
exp (−κ(r − SF )) dr,

which, using the fact that l(r) = (1 − β)w(0)e−κr/qH(r) and the expressions for n(r) and

qH(r) derived earlier, simplifies to

n(0)w(0)(1− β)

∫ SF

0

r exp

(
−δγ − κα

1− α
r

)
dr = qH(0)

∫ S

SF

r exp

(
− κ

(1− β)
r

)
dr.

Using (11) and (13) we can further simplify this equation to

 S∫
SF

r exp

(
− κ

1− β
r

)
dr

 =

(1− β)

(1− α)
α

 SF∫
0

r exp

(
−γδ − ακ

1− α
r

)
dr

 exp

(
−κ+ δγ + βκα− βδγ

(1− α) (1− β)
SF

)
. (15)

Observe that this is an equation that implicitly defines SF as a function of S, as promised.

The following Lemma establishes that there is a unique SF corresponding to each S that is

strictly increasing in S and converging to a finite limit as S increases unboundedly.

Lemma 1 For each S > 0, (15) uniquely determines SF (S) ∈ (0, S). Furthermore, SF (S)

is strictly increasing in S and limS→∞ SF (S) = S̄F > 0.

Proof. See Appendix.

The second market-clearing condition requires that the total number of residents in the

city must equal the total population of the city, P . This requires that P =
∫ S
SF

[2πr/l(r)]dr.
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Since l(r) = (1− β)w(0) exp (−κr) /qH(0) exp
(
− κ

1−β r
)

, this implies

P =
qH(0)

(1− β)w(0)

∫ S

SF (S)

2πr exp

(
− βκ

(1− β)
r

)
dr.

Using (11), (13), and (15), we obtain

n(0) =
P

2π

1[
SF (S)∫

0

r exp
(
−γδ−ακ

1−α r
)
dr

]
[

S∫
SF (S)

r exp
(
− κ

1−β r
)
dr

]
[

S∫
SF (S)

r exp
(
− κβ

1−β r
)
dr

] . (16)

Since z(0) = n(0)
∫ SF (S)

0
2πr exp

(
−
[
δγ−κ
1−α + δ

])
rdr, knowing n(0) allows us to pin down the

level of the external effect at the city center. This completes the first part of the equilibrium

determination problem.

Before proceeding to the second part, it is useful to report how allocations and prices

within the city are affected by changes in the supply of urban land, holding A and P fixed.

For n(0), we see from (16) that the first fractional term is decreasing in S since SF (S) is

increasing in S. The effect on the second fractional term seems unclear because an increase

in S increases both the numerator and the denominator. Notice, however, that both integrals

calculate a “mean distance” with weights that decline exponentially with distance and the

weights decline faster for the numerator term (since β > 0). Thus an increase in S increases

the numerator proportionately less than the denominator and n(0) is declining in S. Since

z(0) is proportional to n(0), an increase in S is also a force depressing z(0). However, an

increase in S increases the geographic reach of the external effect by increasing SF and this is

a force that elevates z(0). But if δ > κ, the first effect dominates and z(0) is also decreasing

in S.5. When γ < 1, which is the empirically relevant case (γ is generally estimated to be

less than 0.10), (9) implies that δ > κ. Therefore, we can without much loss of generality

restrict out attention to this case. Then, it is easy to verify:

5These results are formally established in Chatterjee and Eyigungor (2014)
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Proposition 1 (The Effect of Change in City Size S): If A and P are held constant, (i)

employment density (and employment), the level of the production externality, and rents at

the city center are decreasing in S, (ii) if α+γ ≤ 1, wages at the city center are increasing in

S, otherwise the effect is ambiguous and (iii) if β(α+γ) ≤ 1, U is increasing in S, otherwise

the effect is ambiguous.

We now turn to the second part of equilibrium determination, namely, the determination

of S and U , given A and P . Since it costs d units of the consumption good to convert one

unit of undeveloped land into urban land, developers (the entities that own all land in this

economy) will continue to develop urban land until the rent at the city boundary S is equal

to the cost of development. Therefore, S is determined by

q(S;A,P ) = d, (17)

where q(S;A,P ) is the rent at the city boundary when TFP is A and population is P . The

following Lemma establishes how q(S;A,P ) varies with S.

Lemma 2 q(S;A,P ) is strictly decreasing in S and strictly increasing in A and P . Fur-

thermore, limS→0 q(S;A,P ) =∞ and limS→∞ q(S;A,P ) = 0.

Proof. See Appendix.

All else the same, rents fall with S because workers who live at the boundary earn the least.

Complementing this effect is the fact that, recorded in Proposition 1, rents at the city center

are also declining with S. The latter effect pushes down rents in all locations in the city,

including the boundary. The “Inada-type” conditions of q(S;A,P ) are also intuitive: Rents

in locations very far from the city center must be very low to compensate for the very large

amount of time lost in commuting to a job. If the boundary is very close to the city center,

employment density at the center must be very high, which would require very high rents

there and, by extension, at the city boundary. Given Lemma 2, it follows that, for any A,

P , and d, there is a unique S, denoted Sd(A,P ) that solves (17).
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The following proposition describes how S is affected by changes in TFP, population,

and costs of development. These properties follow directly from Lemma 2.

Proposition 2 Sd(A,P ) is strictly increasing in A and P and strictly decreasing in d. Fur-

thermore, limP→0 Sd(A,P ) = 0 and limP→∞ Sd(A,P ) =∞.

Finally, we come to the relationship between U , the utility deliverable by a city, and A

and P when the city boundary adjusts so that rent at the boundary is d. We will denote this

relationship by the function Ud(A,P ). We are primarily interested in understanding how

this function behaves with respect to variations in P , since migration in or out of the city

is the key adjustment mechanism for cities. It is a convenient feature of the model that this

function can be expressed as a composition of two functions: An “outer” function, denoted

Vd(A, S), which gives the utility deliverable by a city given A and S and rent at the boundary

of d, and an “inner” function, which is just Sd(A,P ). Thus, Ud(A,P ) = Vd(A, Sd(A,P )).

The benefit of this decomposition is that the Vd(A, S) function has a closed-form expression

that allows easy assessment of its shape with respect to variations in S. And, since Sd(A,P )

is strictly increasing in P (Proposition 2), the shape of Ud(A,P ) with respect to P is simply

a shape-preserving rescaling of Vd(A, S).

To develop the Vd(A, S) function, we use two conditions. The first condition is that rent

at the city boundary must be d, i.e., d = qH(0) exp(−κ/(1 − β))S. This condition implies

that S and d pin down rents at the city center. We have already seen, however, that rents

at the city center are determined by A, n(0), and z(0). Since z(0) is itself pinned down by

n(0), it follows that the first condition fully determines n(0) as a function of A, S, and d.

The second condition equates the utility obtained by a worker who resides at the city

boundary when the city size is S and rent at the boundary is d to the utility delivered by the

city to any worker, which is V . This equality gives V = ββ(1−β)1−βd−(1−β)w(0) exp(−κ/(1−

β)S). Since w(0) is ultimately determined by n(0), and n(0) is determined by A, S and d

(from above), the expression for V yields Vd(A, S).
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To determine the shape of Vd(A, S) with respect to S, it is convenient to examine

ln(Vd(A, S)). Collecting terms that do not depend on S into a “constant” D, we have

ln(Vd(A, S)) = (18)

D +
γ

α + γ
ln

[∫ SF (S)

0

r exp

(
−δ (γ + 1− α)− κ

1− α
r

)
dr

]
+

−κ 1− β (α + γ)

(1− β) (γ + α)
S +

(
γ + α− 1

γ + α

)
−κ+ δγ + βκα− βδγ

(1− α) (1− β)
SF (S).

From Lemma 1, however, we know that limS→0 SF (S) = 0 and limS→∞ SF (S) = S̄F . There-

fore, limS→0 ln(Vd(A, S)) = limS→∞ ln(Vd(A, S)) = −∞. Whether the function generally has

a single peak is not easy to establish, although in our numerical simulations we have found

it be single-peaked (i.e, inverted U in shape). When S is small the rate of change of lnVd

is likely to be dominated by the logarithmic term and, therefore, will be large and positive.

Hence the function is likely to be initially increasing in S. More importantly, when S is large

the behavior of lnVd is dominated by the term involving S, since SF converges to a constant.

Hence the function is eventually declining in S. To summarize:

Lemma 3 Assume 1 − β(α + γ) > 0. Then, limS→0 Vd(A, S) = limS→∞ Vd(A, S) = 0. In

addition, Vd(A, S) is eventually declining in S.

As mentioned earlier, because Sd(A,P ) is strictly increasing in P , Ud(A,P ) inherits all

the properties of Vd(A, S). Therefore, we have the following proposition:

Proposition 3 Assume 1− β(α+ γ) > 0. Then, limP→0 Ud(A,P ) = limP→∞ Ud(A,P ) = 0.

In addition, Ud(A,P ) is eventually declining in S.

The condition 1 − β(α + γ) > 0 is our analog of what Fujita, Krugman, and Venables

(1999) call the “no-black-hole condition.” If this condition is violated, then, as is evident

from the expression of ln(Vd(A, S)), utility deliverable by the city would be increasing in S.

Since Sd(A,P ) is strictly increasing in P , utility deliverable by the city would be strictly
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increasing in P . The model would then imply that the entire population of an economy

would tend to gravitate to one giant city—the “black hole,” so to speak. To rule this out, β

must be low enough, or equivalently, the importance of land in the worker’s utility must be

high enough.6

5 City Growth and Land Supply Constraints

In this section, we use the model to explore the effects of an increase in the demand for urban

land on city wages and rents when there are physical constraints on the supply of new urban

land.7 We will consider two cities that are in full spatial equilibrium with land rent at the

boundary equal to d. The cities have identical primitives and are identical in terms of size

and population. We will assume that each city is on the monotonically declining portion of

the Ud(A,P ) function, so that comparative statics results are well-defined.

We consider two different ways in which the demand for urban land can increase. In

one case there is an increase in the population of the economy due to natural growth or

immigration and the new arrivals have to locate in one or the other city. The other case is

an increase in TFP in the two cities which draws in workers from the rest of the economy.

Following the increase in demand, we will assume that one of these two cities is free to

convert undeveloped land into developed land at the cost d (i.e., it can expand the boundary

of the city), but other city is physically restricted from doing so (i.e., geography prevents it

6Lucas and Rossi-Hansberg (2002) (and also Lucas (2001)) assume a condition that is stronger, namely,
α + γ < 1. Although this condition is also labeled a “no-black-hole condition,” it is needed to rule out
a different kind of black hole, one in which all firms pile up at 0 (the city center) with each firm using a
vanishingly small amount of land but enjoying unboundedly high external effect, i.e., it is needed to rule out
the case where z(0) diverges to ∞. However, this case is not a concern for us because z(r) is known to have
the negative exponential form and, hence, productivity at the city center is naturally bounded above by city
size and total population.

7There is small theoretical literature on the effects of urban land-use restrictions on city wages and rents.
Brueckner (1990), Ding, Knaap, and Hopkins (1999), and Brueckner (2007) study the impact of urban growth
boundaries in the context of the standard monocentric city model with a (negative) congestion externality,
while Bertaud and Brueckner (2005) examine the impact of building-height restrictions, again in the standard
monocentric city model. However, none of these studies allow for production externalities and therefore miss
the production-side effects of such controls.
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Figure 3
 
 

Effects of Economy-wide Population Growth on City Population 
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from pushing out the boundary of the city). We call the former the Unrestricted City and

the latter the Restricted City.

The effects of the two types of shocks on the population of these two cities are illustrated

in Figures 3 and 4. Figure 3 shows the impact of an increase in economy-wide population.

The solid hump-shaped line plots ln(Ud(A,P )) against P for the unrestricted city. The solid

horizontal line is the utility available to a worker in any other city in the economy prior

to the increase in population. We assume that the city is at the point labeled A (which

corresponds to a stable equilibrium in the usual sense). The increase in population then

results in a drop in the utility deliverable by cities in general, so the horizontal line shifts

down to the dotted one. People move into the city until the city reaches the point labeled B.

The dashed line in the figure is the utility curve for the restricted city. Since this city cannot

expand its physical boundary, the decline in utility in response to increased in-migration is

larger (at any level of P ) relative to the unrestricted city. People move into the city until

the restricted city reaches the point labeled C.

Figure 4 shows what happens if the two cities receive a positive TFP shock. The solid
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Figure 4

              Effects of City-Specific TFP Growth on City Population 
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lines have the same interpretation as in Figure 1, and the initial position of both cities is A.

The shock leaves the general level of utility (the solid horizontal line) unchanged, but shifts

the ln(Ud(A,P )) for the two cities upward to the dotted line. The city draws in population

from elsewhere in the economy until it reaches point B. The dashed line is the utility curve

for the restricted city. Once again, it lies below the utility curve for the unrestricted city.

The restricted city also draws in people from the rest of the economy until it reaches point C.

We can, however, view this adjustment as happening from A′ to B and C, which is exactly

like a drop in the general level of utility from what is available at A′ to the solid horizontal

line. Thus the effects of the two types of demand shocks are fundamentally similar.

What we take from Figures 2 and 3 is that, following the increase in total population

or TFP, both cities will experience increases in population. Proposition 2 implies that the

unrestricted city will be physically larger than the restricted city following the shock. From

the figures, it is also clear that population will increase more in the unrestricted city than

in the restricted one. Of course, in the new equilibrium, both cities will deliver the same

utility to workers residing there. In what follows, we analyze the impact of demand shocks
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on employment density, wages, and land rents in the two cities. We analyze land rents last

because it is easier to understand why land rents behave as they do once we understand how

employment density and wages are affected by the demand shocks.

5.1 Demand Shocks and Employment Density

We will focus on employment density at the city center since that will determine what

employment density will be in any other location. Examining the expression for n(0) in

(16), we see that it is not immediately possible to tell how n(0) compares across restricted

and unrestricted cities: The unrestricted city has higher P and larger S relative to the

restricted city. However, if we use the fact that, in equilibrium, both cities must deliver the

same utility to workers, it becomes possible to compare employment densities.

Observe that, in both the restricted city and the unrestricted city, the firm’s bid rent

and the worker’s bid rent for the city center coincide. This implies (1− α)Az(0)γn(0)α =

(1− β) β
β

1−β

(
w(0)
U

) 1
1−β

, where U is the common utility delivered by the two cities. Using the

fact that both w(0) and z(0) can be expressed in terms of only n(0), S, and other parameters,

it is possible to express n(0) in terms of U , S, and other parameters:

n(0) = KA
β

1−β(α+γ)U
−(1−β)

1−β(α+γ) × (19)

exp

(
[δγ − κ]− β[δγ − ακ]

(1− α)(1− β(α + γ))
SF

)[∫ SF

0

2πr exp

(
−
[
δγ − κ
1− α

+ δ

]
r

)
dr

] γβ
1−β(α+γ)

,

where K is a positive quantity that depends on parameters. By virtue of the “no-black-

hole condition” 1 − β(α + γ) > 0 and the upper bound on κ in (9) it follows that n(0) is

increasing in SF . Since SF is strictly increasing in S (Lemma 1), it follows again that, in the

new equilibrium, employment density in the center of the unrestricted city must exceed that

in the center of the restricted city. We summarize this discussion in the following proposition:

Proposition 4 If two cities have the same fundamentals and one of the cities has an urban

growth boundary that is just binding, an increase in the demand for urban land will cause
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employment density in the unrestricted city to rise more than in the restricted city.

5.2 Demand Shocks and (Product) Wages

As in the case of employment density, it is sufficient to consider what happens to wages offered

by firms locating at the city center, namely, w(0). In any city, w(0) = αAz(0)γn(0)α−1. Using

the relationship between z(0) and n(0), this implies

w(0) = αA

[
2π

∫ SF

0

r exp

(
−
[
δγ − κ
1− α

+ δ

]
r

)]γ
n(0)γ+α−1. (20)

We already know that, in the new equilibrium, the unrestricted city will be larger in size

and it will have a higher employment density. From the above expressions it follows that if

α+ γ ≥ 1 then wages at the city center will be higher in the unrestricted city relative to the

restricted one. By continuity this ordering will also prevail when α + γ is slightly less than

1, but it may or may not prevail when α + γ is substantially less than 1. Since (1 − α) is

simply the exponent to land in the production function and γ is the exponent to the level

of agglomeration in the city, wages at the center of the unrestricted city will exceed those

in the center of the restricted city, provided agglomeration is more important in production

than land. Summarizing, we have the following proposition:

Proposition 5 If two cities have the same fundamentals and one of the cities has an urban

growth boundary that is just binding, and if γ ≥ 1− α, an increase in the demand for urban

land will cause the wage offered at the center of the unrestricted city to exceed the wage

offered at the center of the restricted city.

5.3 Demand Shocks and Urban Land Rents

It is helpful to break up the discussion in terms of how demand shocks affect business rents

and how they affect residential rents. Once again, it is sufficient to focus on the rents at the
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city center.

The bid rent for a firm at the city center, qF (0), is (1 − α)Az(0)γn(0)α. Using the

relationship between z(0) and n(0), this implies

qF (0) = (1− α)A

[
2π

∫ SF

0

r exp

(
−
[
δγ − κ
1− α

+ δ

]
r

)]γ
n(0)γ+α. (21)

We already know that, in the new equilibrium, the unrestricted city will be larger in size

and it will have a higher employment density. Therefore, business rents at the center of

the restricted city will be higher than business rents at the center of the restricted city.

Summarizing, we have the following proposition:

Proposition 6 If two cities have the same fundamentals and one of the cities has an urban

growth boundary that is just binding, an increase in the demand for urban land will cause

rents paid by businesses at the center of the unrestricted city to exceed the rents paid by

businesses at the center of the restricted city.

Turning to residential rents, we can proceed by considering again what happens to the

bid rent for residential space at the centers of the two cities. We have

qH(0) = ββ/(1−β)(1− β)w(0)1/(1−β)U−1/(1−β). (22)

Since U is the same for both cities, the ordering of workers’ bid rent for space at the center of

the city depends on the ordering of wages at the center of the city. Therefore, the conditions

that govern the ranking of w(0) also govern the ranking of qH(0): Specifically, if γ ≥ 1− α,

then wages at the center will be higher in the unrestricted city in the new equilibrium and

therefore workers will be willing to bid more for land at the center of the unrestricted city

than in the restricted city. Summarizing, we have the following:

Proposition 7 If two cities have the same fundamentals and one of the cities has an urban

growth boundary that is just binding, an increase in the demand for urban land will cause
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the bid rent for residential space at the center of the unrestricted city to exceed the bid rent

for residential space at the center of the restricted city if γ ≥ 1− α.

Since rent in any location is simply max{qF (r), qH(r)}, the immediate implication of

Propositions 6 and 7 is that, in the new equilibrium, land rents may be higher in every

comparable location in the unrestricted city relative to the restricted city. Specifically,

denoting the physical size of the restricted city by S̄ and land rents in the restricted and

unrestricted cities by qR(r) and qUR(r), respectively, we have the following corollary:

Corollary 1 If γ ≥ (1− α) then, in the new equilibrium, qUR(r) > qR(r) for all r ∈ [0, S̄].

6 Business Structures and City Growth

In this section, we introduce structures as a separate factor of production. Let

Y (r) = Az(r)γN(r)θB(r)ψL(r)1−ψ−θ, (23)

where B(r) denotes the level of structures (building size) in location r. The exponent to

structures is ψ and the exponent to labor is correspondingly reduced to θ = α − ψ. The

exponent to land, therefore, stays the same at 1− α = 1− (ψ + θ).

We will first examine the long run case where structures can be varied along with labor.

Our goal is to first show the equivalence of this setup to previous sections. For the equivalence

to hold, assume that the per unit flow cost at which building services can be obtained in

location r is ωw(r). The optimal choice of B(r) satisfies

B(r) =
ψ

ωθ
N(r).
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Substituting this back into the production function and expressing it in intensive form yields:

y(r) = A

(
ψ

ωθ

)ψ
z(r)γn(r)α.

This is identical to (2), except for the constant multiplying A. Also, with structures explicitly

modeled,

w(r) = θAz(r)γ
(
ψ

θω

)ψ
n(r)α−1.

Thus share of labor in total output is now θ, the share of building services is ψ, and the

share of land rent remains (1 − α). It is evident that these alterations will not affect the

comparative statics results reported in Section 5.

Next we analyze what happens if there is an increase in the demand for urban land but

business structures cannot change. Since business structures are fixed, it makes sense to also

assume that SF is fixed as well. The goal is to understand how Propositions 4-7 are modified

in the presence this short-run rigidity in structures.8

Let’s again take two cities that are initially identical. The business structure density

gradient b(r), as well as SF , are now exogenously given and identical in both cities.

b̄(r) = b(0) exp

(
−δγ − κ

1− α
r

)
for r ∈ [0, S̄F ].

The exogeneity of b(r) means, in effect, that TFP now decays exponentially from the city

center. In general, the rate of decay of TFP will affect the equilibrium employment density

gradient. However, since the gradient of b(r) is the gradient for the initial equilibrium, the

employment gradient for the case where b and SF cannot adjust is the same as in the model

8 Since we do not model residential structures explicitly, the assumption in this part of the analysis is
that residential structures can be altered in the short run. This simplification is meant to capture the fact
that business structures are more difficult to change owing to high building density in the business district
compared to the residential district.
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in which these are endogenous. In particular, we may verify that

n(r) =

[
θAb(0)ψ

z(0)γ

w(0)

] 1
1−θ
[
exp

((
(κ− γδ)

1− α

)
r

)]
.

Since the gradient for n (r) remains unchanged, the gradients for all other endogenous vari-

ables remain identical to the model where b(r) and SF are endogenous.

For concreteness, we analyze the case where both cities receive a positive shock to A.

As before, one city cannot expand its boundary while the other city can at cost d. In the

unrestricted city, two equilibrium conditions need to be satisfied. The first condition is the

labor market balance condition. This condition is the same as (15). Given b̄(0) and S̄F , this

condition reduces to

n(0)
1−β(γ+θ)

1−β

[
θA

(∫ S̄F

0

2πs

[
exp

((
(κ− γδ)

1− α
− δ
)
s

)]
ds

)γ

b(0)ψ

]− β
1−β

×

U
1

1−β

∫ S̄F

0

r exp

(
−δγ − κα

1− α
r

)
dr = β

β
1−β

∫ S

S̄F

r exp

(
− κ

(1− β)
r

)
dr.

The other condition is that rent at the city boundary be d, which is the same as (17). This

condition reduces to

(1− β) β
β

1−β

(
θAz(0)γb(0)ψn(0)θ−1 exp (−κS)

U

) 1
1−β

= d. (24)

Eliminating n(0) gives us the following equilibrium condition for S:

A

(
1

d

)1−β(γ+θ)

U−(γ+θ) = K
[
(exp (+κS))

1
1−β

]1−β(γ+θ)
(∫ S

S̄F

r exp

(
− κ

(1− β)
r

)
dr

)1−(γ+θ)

.(25)

Since θ < α, the “no-black-hole” condition implies that 1 − β(γ + θ) > 0. Hence the first

term on the r.h.s of (25) is increasing in S. The second term on the r.h.s. will be increasing

in S if γ+θ < 1, which is the empirically relevant case (the empirical evidence is discussed in

the next section). Therefore, the r.h.s of (25) is increasing S. If there is an increase in A or
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a decline in U (due to increase in aggregate population), the unrestricted city will expand in

size. The labor market balance condition (24) (which applies to both cities) tells us that n(0)

will be strictly higher in the unrestricted city relative to the restricted city. Now, observe

that

w(0) = θAz(0)γb(0)ψn(0)θ−1.

Since SF is the same (fixed) in both cities, z(0) is the same multiple of n(0) in both cities.

Therefore, when γ+θ < 1, w(0) will be lower in the unrestricted city relative to the restricted

city. Since utility offered by the two cities must be the same, it follows immediately that

residential rents in the unrestricted city will rise less than in the restricted city.9 Summarizing

we have

Proposition 8 Assume business structures are fixed and γ < 1 − θ. If two cities have the

same fundamentals and one of the cities has an urban growth boundary that is just binding,

an increase in the demand for urban land will cause employment density in the unrestricted

city to exceed that in the restricted city. Wages and bid rents for residential land at the

center of the restricted city will exceed the wages and bid rents for residential land at the

center of the unrestricted city.

7 Evidence on Agglomeration and Share Parameters

As we have seen, the impact of urban land supply constraints on city wages and rents depend

on the magnitudes of the production externality parameter γ and the share parameters α

(long run) and θ (short run). In this section we discuss the empirical evidence on these

parameter values.

9If γ + θ > 1, the utility deliverable by the city will be an inverted-U function of S and there will be two
values of S that will deliver the given utility level. As long as the city ends up on the downward sloping
portion of the utility curve following the shock, the increase in A or decrease in U will cause the unrestricted
city to expand in size. In this case, the unrestricted city will experience a larger increase in wages and
residential rents than the restricted city.
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Turning first to γ, Melo, Graham, and Noland (2009) (Table 2, p. 355) report that

estimates of this parameter (across various types of datasets, methodology and measures of

agglomeration) range between −0.366 and 0.319 for the US, with the mean (and median)

estimate at 0.036. The median estimate for other developed countries ranges between 0.028

(Canada) and 0.083 (UK). Across industrial groupings, the median estimate of γ for man-

ufacturing is 0.036 and for services it is 0.142. Studies that use some measure of market

potential to measure agglomeration, the median estimate for γ is 0.076. Measures based on

average density or size imply median estimates of 0.039 and 0.030, respectively.

Turning to (1 − α), one estimate comes from Brinkman (2013) who uses data on com-

mercial land prices and quantities for Columbus, OH, and estimates (1 − α) to be 0.015.

Ciccone (2002) also suggests 0.015 as a reasonable estimate for (non-farm) business land

share. Finally, Rappaport (2008) uses 0.016, citing unpublished results by Jorgenson, Ho,

and Stiroh (2005). These findings indicate that (1− α) = 0.015 is a reasonable estimate.

Estimates for share of structures, ψ, seem sparse. Valentinyi and Herrendorf (2008) report

the share of structures in US manufacturing to be 0.09. It is possible service industries use

less structures, but we do not have information on service industries.10

For (1 − β), Davis and Heathcote (2007) estimate that land accounts for 36 percent of

the value of aggregate housing stock. Given that households spend about 25 percent of their

budget on housing (which includes the services from structures and land), a plausible value

of (1− β) is around 0.10 ≈ 0.25× 0.36.

What we take from this discussion is that γ is likely to exceed land share (1− α). Thus

the evidence indicates that in the long run the externality effect dominates the land-intensity

effect. Furthermore, with α + γ ≈ 1 and β ≈ 0.90, the no-black-hole condition is satisfied.

On the other hand, the estimate of ψ implies that θ = α − ψ is 0.9. Thus, the estimate

of θ + γ is well below 1. These estimates suggest that in the short run (when structures

10The authors definition of services includes housing services. Since housing services tend to be more
intensive in structures than business services, their estimate of the share of structures (0.15) is probably too
high for our purposes.
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are fixed), an increase in the demand for urban land is likely to raise wages and residential

land prices more in cities that are geographically constrained. But, as structures adjust, this

relationship is likely to be reversed.

8 Conclusion

The goal of this paper is to assess, theoretically and quantitatively, the role of geography

for the value of urban land. In the model, urban agglomerations arise because of positive

production externalities that make firms want to locate close to each other. The model makes

clear predictions about how constraints on the physical expansion of the city affects city wages

and land values when there is an increase in the demand for urban land. In the long run,

when all non-land factors of production can be varied, constraints on physical expansion is

predicted to hurt city wages and residential rents. In the short run, when business structures

are fixed, constraints on physical expansion is predicted to enhance city wages and residential

rents. As noted in the introduction, these seemingly contradictory effects of geographical

constraints appear to have support in empirical studies that separately focus on the long and

short runs. The fact that the time horizon is predicted to matter for assessing the impact of

geographical constraints on the growth of city wages and rents is an important finding that

is not presaged in earlier work.
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APPENDIX

Proof of Lemma 1 in the text

Given any S > 0, (9) (the upper bound on κ) implies that the r.h.s. of (15) is increasing

in SF . The l.h.s. of (15) is clearly decreasing in SF . Furthermore, the r.h.s. is 0 for SF = 0

while the l.h.s. is strictly positive, and the r.h.s. is strictly positive for SF = S while the

l.h.s. is 0. Therefore, for each S > 0 there is a unique SF ∈ (0, S) that ensures (15) is

satisfied. Observe also that as S goes up and SF does not change, the integral on the l.h.s.

goes up. Since the r.h.s. is increasing in SF , the equilibrium SF must be strictly higher.

Thus SF (S) is strictly increasing in S.

To prove the second part, we observe that since SF (S) < S for all S, it must be the

case that limS→0 SF (S) = 0. To prove the other limiting result, we will first establish that

limS→∞ SF (S) is bounded above. Let Sn be an increasing sequence diverging to ∞. Let

SF (Sn) be a corresponding sequence of SF that satisfies (15). Then SF (Sn) is also a strictly

increasing sequence. Next, observe that

Sn∫
SF (Sn)

s exp

(
− κ

1− β
s

)
ds = −

[
(1− β)

κ

]2 [
e−

κ
(1−β s(ks+ 1)

]Sn
SF (Sn)

.

If SF (Sn) diverges to infinity along with Sn, the above integral will converge to 0. This will

imply that the l.h.s. of (15) will converge to 0 while the r.h.s. will diverge to ∞, which is

impossible. Hence, SF (Sn) must be bounded above. Since SF (S) is strictly increasing, it

follows that limSF (S) must converge to some number S̄F > 0.

To prove Lemma 2 in the text, we need the following two lemmas.

Lemma 1 (A) Let 0 ≤ sL < sU . Let Λ(sL, sU) = [
sU∫
sL

sek2sds]/[
sU∫
sL

sek1sds]. Then, Λ(sL, sU)

is increasing (decreasing) in both SU and SL if k1 < (>)k2.
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Proof. We will first establish the following two sets of inequalities. If k1 < k2, then

e(k2−k1)sL <

sU∫
sL

sek2sds

sU∫
sL

sek1sds

< e(k2−k1)sU , (26)

and if k2 < k1, then

e(k2−k1)sU <

sU∫
sL

sek2sds

sU∫
sL

sek1sds

< e(k2−k1)sL . (27)

Turning first to the l.h.s. inequality in 26, we observe that sek2s = sesLk2+(s−sL)k2and

sek1s = sesLk1+(s−sL)k1 . Multiplying both sides of the latter equation by e(k2−k1)sL yields

e(k2−k1)sLsek1s = sesLk2+(s−sL)k1 ≤ sesLk2+(s−sL)k2 = sek2s, where the inequality follows be-

cause k2 > k1 and s − sL ≥ 0. Furthermore, the inequality is strict for all s ∈ (sL, sU ].

Therefore, integrating the first and last expressions in the chain with respect to s, we have

e(k2−k1)sL

sU∫
sL

sek1sds <

sU∫
sL

sek2sds.

Turning to the r.h.s. of the inequality, we observe that sek2s = sesUk2+(s−sU )k2and sek1s =

sesUk1+(s−sU )k1 . Multiplying both sides of the latter equation by e(k2−k1)sU yields

e(k2−k1)sUsek1s = sek2sU+(s−sU )k1 ≥ sesUk2+(s−sU )k2 = sek2s,

where the inequality follows since k2 > k1 and s − sU ≤ 0. Furthermore, the inequality is

strict for all s ∈ [sL, sU). Therefore, integrating the first and last terms in the chain with
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respect to s, we have

e(k2−k1)sU

sU∫
sL

sek1sds >

sU∫
sL

sek2sds.

The proof of 27 is entirely analogous.

We now turn to the proof of the Lemma. We begin with the case in which k1 < k2.

Observe that

∂ ln(Λ(sL, sU))

∂sU
=
sU exp (k2sU)
sU∫
sL

sek2sds

− sU exp (k1sU)
sU∫
sL

sek1sds

.

Suppose, to get a contradiction, that ∂Λ(sL, sU)/∂sU ≤ 0. Then, we must have

sU exp (k2sU)
sU∫
sL

sek2sds

≤ sU exp (k1sU)
sU∫
sL

sek1sds

.

Or, given that all elements are positive, we have

exp ([k2 − k1] sU) =
sU exp (k2sU)

sU exp (k1sU)
≤

sU∫
sL

sek2sds

sU∫
sL

sek1sds

.

But this contradicts the r.h.s. inequality in Lemma 1. Therefore, ∂Λ(sL, sU)/∂sU > 0.

Analogous proof can be given for the case in which k2 < k1.

Remark: Let I(sU , sL, k) =
sU∫
sL

s exp (−ks) ds. Then (i) limsU ,sL→∞ I(sU , sL, k) = 0 and (ii)

limsU→∞,sL→s I(sU , sL, k) = Ī > 0.

Observe that

sU∫
sL

se−ksds =
sUe

−ksU − sLe−ksL
−k

− e−ksU − e−ksL
k2

.
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To prove (i), we notice that, as sU and sL go to infinity, the second term goes to 0, and the

first term (on an application of L’Hospital’s Rule to s/eks) also goes to 0. To prove (ii), we

observe that if sU goes to infinity and sL converges to s, then I(sU , sL, k) converges to

−se−ks

−k
+
e−ks

k2
> 0.

Lemma 2 (A) (The Effects of a Change in Population): If A and S are held constant, (i)

employment density and the level of the production externality change proportionately with

P , (ii) the elasticity of rents in any location with respect to P is α+ γ, (iii) the elasticity of

wage in any location with respect to P is α + γ − 1, and (iv) elasticity of U with respect to

P is β(α + γ)− 1.

Proof. If A and S are held constant, (i) follows because a change in P will change n(0)

(and therefore z(0)) proportionally. From this fact, we can infer (ii) using (11), we can infer

(iii) using (6), and we can infer (iv) from the fact that U = ββ(1− β)1−βw(r)q(r)−(1−β).

Proof of Lemma 2 in the text

To prove the first part, we note that qH(S;A,P ) = qH(0)e−
κ

(1−β)S. Since e−
κ

(1−β)S is decreasing

in S, it is sufficient to show that, if we hold A and P constant, qH(0) is decreasing in S.

To begin, note that qF (0)e−
δγ−κα
1−α SF = qH(0)e−

κ
(1−β)SF , which implies that qF (0)/qH(0) =

e−
−κ+δγ+αβκ−βδγ

(1−α)(1−β) SF . By (9), the r.h.s. of the latter equation is increasing in SF . Since SF (S) is

increasing in S, it follows that qF (0)/qH(0) is increasing in S. From Proposition 1 we know,

holding A and P constant, that qF (0) is decreasing in S. Therefore qH(0) must be decreasing

in S. And, if we hold fixed S and P , qH(0) is proportional to A and therefore q(S;A,P ) is

increasing in A. And, holding fixed S and A, we see that qH(0) is increasing in P by Lemma

2(A). Therefore q(S;A,P ) is increasing in P .

We now turn to limiting behavior of qH(S;A,P ).
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Part (i): limS→∞ qH(S;A,P ) = 0. Consider

qH(S;A,P ) = (1− β) β
β

1−β

(
w(0) exp (−κS)

U

) 1
1−β

.

Using (10), (11), (13), (16), and the expression for z(0), we can express the ratio of w(0)

to U as

w(0)

U
= KP (1−β)(γ+α)A−1

 S∫
SF

s

(
exp
−κβ
1− β

s

)
ds

−(1−β)(γ+α)

×

(∫ SF

0

s exp

(
κ− δ (γ + 1− α)

1− α
s

)
ds

)γ(1−β)

×

exp

(
(−κ+ δγ + βκα− βδγ) (γ + α− 1)

(1− α)
SF

)
,

where K is a positive constant. Given that limS→∞ SF (S) = S̄F , the last two terms approach

finite numbers. And, by Lemma 1,
S∫
SF

s
(

exp −κβ
1−β s

)
ds appoaches a strictly positive finite

number. Thus, we can conclude that, as S → ∞, the ratio w(0)/U approaches a finite

number as well. Therefore, the limiting behavior of qH(S;A,P ) is governed by the limiting

behavior of exp (−κS) . Hence, limS→∞ qH(S;A,P ) = 0.

Part (ii): limS→0 qH(S;A,P ) =∞

Since S > SF (S), S → 0 implies SF (S) → 0. Then, it is easiest to show that qF (0) =

(1− α) z(0)γn(0)α goes to infinity, which would imply that qH(S;A,P ) goes to infinity also.

Turning first to n(0), we observe that

n(0) =


S∫
SF

s exp
(
− κ

1−βs
)
ds

S∫
SF

s
(

exp −κβ
1−β s

)
ds

 P

2π

[
SF∫
0

s exp
(
ακ−γδ

1−α s
)
ds

] .
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We know from Lemma 1 that

exp (κSF ) <

[
S∫
SF

s
(

exp −κβ
1−β s

)
ds

]
[
S∫
SF

s exp
(
− κ

1−βs
)
ds

] < exp (κS) .

This implies that as S and SF converge to 0 (and so both exp (κSF ) and exp (κS) converge

to 1) the term in square brackets converges to 1. We also know that

[
SF∫
0

s exp
(
ακ−γδ

1−α s
)
ds

]
goes to zero as SF goes to zero, so n(0) goes to infinity as S goes to zero.

37


	Introduction
	The Environment
	Monocentric City with Endogenous Business District
	Equilibrium
	City Growth and Land Supply Constraints
	Demand Shocks and Employment Density
	Demand Shocks and (Product) Wages
	Demand Shocks and Urban Land Rents

	Business Structures and City Growth
	Evidence on Agglomeration and Share Parameters
	Conclusion

