
Preliminaries

Data to decisions



The goal

 This class describes the process whereby data are used to 
inform business decisions

 In a nutshell, it goes like this:
1. State a precise question/problem
2. Get appropriate data
3. Validate the data (e.g. is sample representative of target 

population?)
4. Select a model 
5. Estimate
6. Answer question/optimize/make decision



The tools

 Data processing (excel for small problems, e.g.)
 Probability theory
 Statistics
 And, finally, the more ad-hoc approaches people use in 

practice, such as classification 



Example 1: Quality Control 



Calibrating a machine

 A company claims that a plastic injection press is properly 
calibrated 

 Properly calibrated means ≤ 1% defect rate

 A 1,000-unit test-run produces 16 defective units

 Bad calibration or sample uncertainty?



Hypothesis testing

 Null Hypothesis
𝐻𝐻0:    True defect rate is 𝜋𝜋 ≤ 1%

 Should 𝐻𝐻0 be rejected given the outcome of the test run?

 Does the evidence favor the alternative hypothesis
𝐻𝐻𝑎𝑎: True defect rate is > 1% ?



The idea

 Suppose I flip a supposedly fair coin 20 times

 If I did this 20-flip experiment over and over, I’d expect to see 
around10 heads on average

 If I saw 12 heads in a particular sample, say, I would accept it as 
compatible with sample uncertainty

 But if I flip 20 heads in a row, I should probably reject the 
hypothesis that the coin is fair

 Because this should only happen in 0.0001% of the trials



Back to quality control

 Assume 𝜋𝜋 = 1%

 Then the sample defect rate �𝜋𝜋 is roughly normally distributed 
with mean 𝜋𝜋 and standard deviation

𝜋𝜋(1−𝜋𝜋)
𝑛𝑛

where 𝑛𝑛 = 1,000 is the sample size 

 This follows from the Central Limit Theorem (CLT)



Normal distribution facts

 With 95% probability ex-ante, a draw from a normal 
distribution is:
1. within 1.96 standard deviations of the mean;
2. no higher than mean + 1.645 standard deviations
3. no lower than mean - 1.645 standard deviations

 Those sorts of facts underlie most of the tests we’re 
going to learn about



Critical test value

 When normality holds (≈ sample is large enough), sample 
mean ( �𝜋𝜋) should be lower than population mean plus 1.645

times  𝜋𝜋(1−𝜋𝜋)
𝑛𝑛

in 95% of samples

 Here, this critical value is 1% + 1.645 × 0.315% ≈ 1.52%

 Less than 5% chance of getting a sample with more than 15 
defects if 𝐻𝐻0 is right

 So, “in all likelihood”, 𝐻𝐻0 is wrong



Computing p-values

 Now 𝜋𝜋(1−𝜋𝜋)
𝑛𝑛

= 1%(99%)
1,000

≈ 0.315%

 The probability of observing a 1.6% default rate or 
higher is, in excel-speak:

1 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 1.6%, 1%, 0.315%,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≈ 2.83%

 That number is called the p-value

 Unlikely that sample uncertainty can explain away the 
high defect rate observed during the test run



Classical estimation 

 �𝜋𝜋, the sample mean rejection rate, is an estimate of 𝜋𝜋


𝜋𝜋(1−𝜋𝜋)

𝑛𝑛
is the standard error of the estimate (under the 

null), its precision so to speak

 When we don’t know 𝜋𝜋, the standard error can itself be 
estimated as 

�𝜋𝜋(1 − �𝜋𝜋)
𝑛𝑛



Confidence interval

 In 95% of samples, the interval

�𝜋𝜋 − 1.96
�𝜋𝜋 1 − �𝜋𝜋

𝑛𝑛
, �𝜋𝜋 + 1.96

�𝜋𝜋 1 − �𝜋𝜋
𝑛𝑛

contains the true defect rate 𝜋𝜋

 This is called a 95% confidence interval  for the defect rate



Standard deviations vs standard errors

 Standard deviations are a measure of the variability of a 
random object

 Sample statistics/estimates are random objects (why?)

 So they have a standard deviation, which is called a standard 
error 

 All standard errors are standard deviations

 But not all standard deviations are standard errors



Example 2: Forecasting returns



Asset pricing

 What return should I expect from IBM given how I expect the 
overall market (the S&P500) to perform?

 Data: historical returns for IBM and S&P500
 Would any other data be useful? Classic finance (CAPM) says 

no
 In fact, classic finance says that the “best” model for our 

purposes is a simple linear regression model:

𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑎𝑎 + 𝛽𝛽𝑟𝑟𝑆𝑆&𝑃𝑃 + 𝜀𝜀

where 𝜀𝜀 is white noise (i.e. mean zero, normally distributed and 
independent of everything)



Model selection issues

 Classic finance fails in practice
 So people fumble around for better models…
 … adding covariates (independent variables) they find useful
 See Fama-French’s data page for more



Example 3: Marketing



Spending forecast

 How much should I expect a new customer to spend on 
my service per year given their observed characteristics?

 Data: dataset of existing customer characteristics and 
spending history

 What model to select? 
 This is the toughest question one ever asks in Stats
 It is full of pitfalls we will discuss at length, such as 

overfitting



Example 4: Promotion Budgeting



Promotion budget optimization

 Budget  of $𝐵𝐵 to boost new customer spending over the next year 
via advertising

 Potential target types: 𝑖𝑖 = 1,2, …𝑁𝑁
 Select an amount 𝑐𝑐 𝑖𝑖 to spend on type 𝑖𝑖 subject to:

�
𝑖𝑖

𝑐𝑐(𝑖𝑖) ≤ 𝐵𝐵

to maximize:

�
𝑖𝑖

𝑁𝑁 𝑐𝑐 𝑖𝑖 − 𝑁𝑁 0 𝑆𝑆 (𝑖𝑖)

where
 𝑁𝑁 𝑐𝑐 𝑖𝑖 is the number of type 𝑖𝑖 consumers who will join given  𝑐𝑐(𝑖𝑖)
 𝑆𝑆 (𝑖𝑖) is their expected spending if they join



Task list and issues

1. Estimate 𝑁𝑁(𝑐𝑐) (a “treatment effect” problem) using 
historical data and/or experimentation

2. Estimate 𝑆𝑆 (𝑖𝑖)
3. This second step is fraught with selection problems: 

a. Will new customers spend like our existing, observably 
similar customers? 

b. Why were they not customers before the incentives?

4. Solve maximization problem (econ problem, we’ve got 
this)
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