
From probability to statistics, 
and back

Data to decisions



The premise

 Data (i.e. samples) are draws from a data-generating-
process (DGP) or population

 Probability is the formal language we use for 
defining/describing DGPs

 Statistical inference is the process of using samples to 
learn about the DGP



The language of probability

 Let 𝑆𝑆 be the set of possible states of the world (the 
“universe”) 

 Roll of a fair dice: 𝑆𝑆 = {1,2,3,4,5,6}
 An event is a subset of 𝑆𝑆
 Ex:  𝐴𝐴 = {2,4,6} is the event that the roll is even
 A probability distribution is a function that assigns 

probabilities to each possible state of the word
 Ex: If dice is fair, 𝑃𝑃(𝑠𝑠) = 1/6 for all 𝑠𝑠 ∈ {1,2,3,4,5,6}, and, 

for any event A: 

𝑃𝑃 𝐴𝐴 =
#𝐴𝐴
#𝑆𝑆



Random variables

 A random variable 𝑋𝑋 attaches a value to each possible state of 
the world

 Called discrete or categorical if it can assume only a finite (or at 
least countable) set of values…

 … continuous if it can take any value on an interval or 
collection of intervals

 Ex: 𝑋𝑋 pays $1 of roll of dice is even, nothing otherwise:
𝑃𝑃(𝑋𝑋 = 1) = 𝑃𝑃(𝑠𝑠 ∈ {2,4,6}) = 0.5

 𝑃𝑃(𝑋𝑋) is the probability distribution of 𝑋𝑋



Expectations

 The expected value of a random variable 𝑋𝑋 is defined as:

𝐸𝐸(𝑋𝑋) = ∑𝑠𝑠∈𝑆𝑆 𝑃𝑃(𝑠𝑠) 𝑋𝑋(𝑠𝑠)

 𝑋𝑋 pays $1 if roll of dice is even, nothing otherwise:

𝐸𝐸 𝑋𝑋 = 𝑃𝑃 𝑠𝑠 = 1 × 0 + 𝑃𝑃 𝑠𝑠 = 2 × 1
+ 𝑃𝑃 𝑠𝑠 = 3 × 0 + 𝑃𝑃 𝑠𝑠 = 4 × 1
+ 𝑃𝑃 𝑠𝑠 = 5 × 0 + 𝑃𝑃 𝑠𝑠 = 6 × 1

= 0.5



Variances and standard deviations
 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = ∑𝑠𝑠∈𝑆𝑆 𝑃𝑃(𝑠𝑠) (𝑋𝑋(𝑠𝑠) − 𝐸𝐸(𝑋𝑋))2

= 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2

 𝑋𝑋 pays $1 of roll of dice is even, nothing otherwise:
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) =
𝑃𝑃 𝑠𝑠 = 1 0 − 0.5 2 + 𝑃𝑃 𝑠𝑠 = 2 1 − 0.5 2

+ 𝑃𝑃 𝑠𝑠 = 3 0 − 0.5 2 + 𝑃𝑃 𝑠𝑠 = 4 1 − 0.5 2

+ 𝑃𝑃 𝑠𝑠 = 5 0 − 0.5 2 + 𝑃𝑃 𝑠𝑠 = 6 1 − 0.5 2

= 0.25

 The standard deviation of 𝑋𝑋 is the square root of its variance



Risk

 A random variable 𝑋𝑋 is risk-free if:

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 0 ⇔ 𝑋𝑋(𝑠𝑠) = 𝑥𝑥 for all 𝑠𝑠 ∈ 𝑆𝑆

 It is risky if 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) > 0



Entropy

 Like variance, it is a measure of uncertainty
 But it measures not so much how far apart realizations of X can be
 Rather how “complex” the distribution is 
 Very elegantly, it measures how many words/messages you’d have to send on 

average to describe the draw
 Formally, 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝 = −∑𝑥𝑥 𝑝𝑝 𝑥𝑥 log[𝑝𝑝 𝑥𝑥 ]

where log base 2 is often used for elegance’s sake
 Notes:

1. If there is only one possible value, entropy is zero
2. Without constraints, entropy is maximized when all possible values of X are 

equiprobable
3. If there are two possible values entropy is maximized at 50-50, where entropy is 1 (in 

base 2)



Multiple random variables

 Data are joint observations of multiple random variables: 
age, income, spending…

 One of the main game we play is to try and use some of 
these variables to predict others

 Ex: given someone’s age and income, what is the best 
possible forecast of their spending over the next year?

 This amounts to learning about the joint probability 
distribution of these variables 

 DGPs are joint probability distributions
 Given data (a few joint observations of 𝑋𝑋,𝑌𝑌,𝑍𝑍), what can 

we say about the DGP? And with what confidence?



Covariance

 We need a notion of how two random variables X and Y are 
related:

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) = ∑𝑠𝑠∈𝑆𝑆 𝑃𝑃(𝑠𝑠) (𝑋𝑋(𝑠𝑠) − 𝐸𝐸(𝑋𝑋))(𝑌𝑌(𝑠𝑠) − 𝐸𝐸(𝑌𝑌))
= 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸(𝑋𝑋))(𝑌𝑌 − 𝐸𝐸(𝑌𝑌))]

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) > 0 means that 𝑋𝑋 tends to be high when 𝑌𝑌 tends 
to be high, and vice-versa

 Note 1: if 𝑋𝑋 is risk-free, then 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) = 0
 Note 2: 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑋𝑋) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)
 Note 3: 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑋𝑋)



Example

 𝑋𝑋 pays $1 if roll of dice is even, 𝑌𝑌 pays $1 if roll of dice is 
4 or more

 Then 𝐸𝐸(𝑋𝑋) = 𝐸𝐸(𝑌𝑌) = 0.5, and:

𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 =
𝑃𝑃 𝑠𝑠 = 1 0 − .5 0 − .5 + 𝑃𝑃 𝑠𝑠 = 2 1 − .5 0 − .5 +
𝑃𝑃 𝑠𝑠 = 3 0 − .5 0 − .5 + 𝑃𝑃 𝑠𝑠 = 4 1 − .5 1 − .5 +
𝑃𝑃(𝑠𝑠 = 5)(0 − .5)(1 − .5) + 𝑃𝑃(𝑠𝑠 = 6)(1 − .5)(1 − .5)

= 1/12



Coefficient of correlation

 𝜌𝜌𝑋𝑋, 𝑌𝑌
= 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) /(𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌)

 Varies from −1 to 1

 𝜌𝜌𝑋𝑋, 𝑌𝑌
= 1 means that 𝑌𝑌 = 𝑎𝑎 𝑋𝑋 + 𝑏𝑏, where 𝑎𝑎 > 0

 𝜌𝜌𝑋𝑋, 𝑌𝑌
= −1 means that 𝑌𝑌 = 𝑎𝑎 𝑋𝑋 + 𝑏𝑏, where 𝑎𝑎 < 0



Example

 𝑋𝑋 pays $1 of roll of dice is even, 𝑌𝑌 pays $1 if roll of dice is 
4 or more:

𝜌𝜌𝑋𝑋, 𝑌𝑌
=
𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

1
12

0.25 × 0.25
=

1
3



Independence

 𝑋𝑋 is independent of 𝑌𝑌 if knowing something about 𝑋𝑋 does 
not change the probability distribution of 𝑌𝑌

 If 𝑋𝑋 and 𝑌𝑌 are independent then 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) = 0

 If 𝑋𝑋 and 𝑌𝑌 are dependent then knowing 𝑋𝑋 is useful for 
forecasting 𝑌𝑌

 We just need to understand or model that dependence in 
order to exploit it



A very useful expression

 𝑉𝑉𝑉𝑉𝑉𝑉 𝑎𝑎𝑋𝑋 + 𝑏𝑏𝑏𝑏 =

𝑎𝑎2𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑏𝑏2𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 + 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋,𝑌𝑌

 In words, when you add/combine two random variables, 
the variance of the combination depends on how risky 
each variable is but also on how they co-vary with one-
another



Statistics

 Data are draws from the DGP

 Given data, what can learn about the DGP?

 In particular, can we find systematic patterns that will be 
useful for forecasting purposes?



Sample description: univariate

 Sample means, standard deviations and other such 
statistics are all “estimates” of the corresponding features 
of the DGP…

 … as long as the sample is representative

 i.e. as long as it was drawn without bias



Map from samples to DGP

 Sample mean: 

�𝑋𝑋 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖

 An estimate of the DGP’s expectation or population mean

 Sample variance: 

𝑠𝑠2 =
1

𝑛𝑛 − 1
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − �𝑋𝑋 2

 An estimate of the DGP’s variance
 …



Multivariate inference

 Sample covariance: 

𝑠𝑠(𝑋𝑋,𝑌𝑌) =
1

𝑛𝑛 − 1
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − �𝑋𝑋 𝑌𝑌𝑖𝑖 − �𝑌𝑌

 An estimate of the DGP’s covariance

 And more generally, any regression on a sample is an 
estimate of what the same regression would produce on 
whole population



A quick aside on the Bessel Correction

 Why are sample variances and covariances divided by 𝑛𝑛 − 1
rather than 𝑛𝑛?

 This is called the Bessel correction

 We have already used the sample to estimate the mean, which 
biases estimates of dispersion down

 Dividing by 𝑛𝑛 − 1 removes that bias

 Immaterial for 𝑛𝑛 large, obviously



Law of large numbers

As long as draws are not overly correlated, sample 
estimates converge to their population counterparts



Building confidence

 Samples enable us to make statements about the 
population/DGP

 But how confident should we be about those statements?

 Statistics are random variables (different samples give 
different answers) so they have a distribution

 The dispersion in those distributions is telling us how 
confident we should be about our sample-based 
generalizations 



Key law 1: the normal distribution

 The sacrosanct bell curve, ubiquitous in nature
 Describes a continuous random variable whose distribution is completely 

described by its expectation and variance
 For any two numbers 𝑎𝑎 and 𝑏𝑏, gives the probability that the variable will fall 

in 𝑎𝑎, 𝑏𝑏
 Ex1: with 95% probability,  a draw from a normal distribution is 

within 𝟏𝟏.𝟗𝟗𝟗𝟗𝝈𝝈 of its expectation, where 𝝈𝝈 is the standard deviation
 Ex2: with 95% probability,  a draw from a normal distribution is 

less than 𝝁𝝁 + 𝟏𝟏.𝟔𝟔𝟔𝟔𝟔𝟔𝝈𝝈
 Many statistics (the mean of a suitably large and representative sample, e.g) 

are approximately normally distributed
 The standard normal distribution is the normal distribution with mean 0

and standard deviation 1



A very useful fact

 If 𝑋𝑋 is normally distributed with mean 𝜇𝜇 and standard deviation 𝜎𝜎 > 0 then

𝑍𝑍 =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

follows a standard normal distribution

 If 𝑋𝑋 is a sample statistic with known expectation 𝜇𝜇 and standard error 𝜎𝜎
then 𝑍𝑍 is called a z-score

 If statistic 𝑋𝑋 is roughly normally distributed 𝑍𝑍 should be within -1.96 and 
+1.96 in 95% of samples



Key law 2: the t-distribution
 To the naked eye, looks a lot like the standard normal 

distribution
 But it has father tails, it attaches more likelihood to draws far 

away from the mean
 Characterized by its number 𝑛𝑛 of degrees of freedom. 
 Useful for hypothesis testing:

1. The mean of 𝑛𝑛 independent draws from a normal distribution 
(properly scaled, see next chapter) follows a t-distribution with 
𝑛𝑛 − 1 degrees of freedom

2. The ratio of coefficients to standard errors in a regression is a 
statistic that is also t-distributed

3. Z-scores when 𝜎𝜎 is unknown
 When 𝑛𝑛 is large, the t-distribution becomes the standard 

normal distribution



Key law 3: the chi-squared distribution

 Distribution of the sum of the square of 𝑛𝑛 independent 
draws from a standard normal distribution

 Characterized by its number 𝑛𝑛 of degrees of freedom
 Expectation is 𝑛𝑛, variance is 2𝑛𝑛
 Useful for hypothesis testing:

1. Do two samples come the same population?
2. Are two random variables independent?



The central limit theorem

 Assume we draw a random sample of size 𝑛𝑛 from a 
population/DGP with mean 𝜇𝜇 and standard deviation 𝜎𝜎

 For 𝑛𝑛 “large”, the sample mean 𝜇̂𝜇 is roughly normally 

distributed with mean 𝜇𝜇 and standard deviation ⁄𝜎𝜎2 𝑛𝑛



Back to our quality control example

 𝐻𝐻𝐻:    Machine true defect rate is 𝜋𝜋 ≤ 1%

 The DGP/Population’s standard deviation is 𝜋𝜋(1 − 𝜋𝜋)

 So, for a sample of size 𝑛𝑛, the standard deviation (or 

standard error) of the mean is 𝜋𝜋(1−𝜋𝜋)
𝑛𝑛
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