
From probability to statistics, 
and back

Data to decisions



The premise

 Data (i.e. samples) are draws from a data-generating-
process (DGP) or population

 Probability is the formal language we use for 
defining/describing DGPs

 Statistical inference is the process of using samples to 
learn about the DGP



The language of probability

 Let 𝑆𝑆 be the set of possible states of the world (the 
“universe”) 

 Roll of a fair dice: 𝑆𝑆 = {1,2,3,4,5,6}
 An event is a subset of 𝑆𝑆
 Ex:  𝐴𝐴 = {2,4,6} is the event that the roll is even
 A probability distribution is a function that assigns 

probabilities to each possible state of the word
 Ex: If dice is fair, 𝑃𝑃(𝑠𝑠) = 1/6 for all 𝑠𝑠 ∈ {1,2,3,4,5,6}, and, 

for any event A: 

𝑃𝑃 𝐴𝐴 =
#𝐴𝐴
#𝑆𝑆



Random variables

 A random variable 𝑋𝑋 attaches a value to each possible state of 
the world

 Called discrete or categorical if it can assume only a finite (or at 
least countable) set of values…

 … continuous if it can take any value on an interval or 
collection of intervals

 Ex: 𝑋𝑋 pays $1 of roll of dice is even, nothing otherwise:
𝑃𝑃(𝑋𝑋 = 1) = 𝑃𝑃(𝑠𝑠 ∈ {2,4,6}) = 0.5

 𝑃𝑃(𝑋𝑋) is the probability distribution of 𝑋𝑋



Expectations

 The expected value of a random variable 𝑋𝑋 is defined as:

𝐸𝐸(𝑋𝑋) = ∑𝑠𝑠∈𝑆𝑆 𝑃𝑃(𝑠𝑠) 𝑋𝑋(𝑠𝑠)

 𝑋𝑋 pays $1 if roll of dice is even, nothing otherwise:

𝐸𝐸 𝑋𝑋 = 𝑃𝑃 𝑠𝑠 = 1 × 0 + 𝑃𝑃 𝑠𝑠 = 2 × 1
+ 𝑃𝑃 𝑠𝑠 = 3 × 0 + 𝑃𝑃 𝑠𝑠 = 4 × 1
+ 𝑃𝑃 𝑠𝑠 = 5 × 0 + 𝑃𝑃 𝑠𝑠 = 6 × 1

= 0.5



Variances and standard deviations
 𝑉𝑉𝐴𝐴𝑉𝑉(𝑋𝑋) = ∑𝑠𝑠∈𝑆𝑆 𝑃𝑃(𝑠𝑠) (𝑋𝑋(𝑠𝑠) − 𝐸𝐸(𝑋𝑋))2

= 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2

 𝑋𝑋 pays $1 of roll of dice is even, nothing otherwise:
𝑉𝑉𝐴𝐴𝑉𝑉(𝑋𝑋) =
𝑃𝑃 𝑠𝑠 = 1 0 − 0.5 2 + 𝑃𝑃 𝑠𝑠 = 2 1 − 0.5 2

+ 𝑃𝑃 𝑠𝑠 = 3 0 − 0.5 2 + 𝑃𝑃 𝑠𝑠 = 4 1 − 0.5 2

+ 𝑃𝑃 𝑠𝑠 = 5 0 − 0.5 2 + 𝑃𝑃 𝑠𝑠 = 6 1 − 0.5 2

= 0.25

 The standard deviation of 𝑋𝑋 is the square root of its variance



Risk

 A random variable 𝑋𝑋 is risk-free if:

𝑉𝑉𝐴𝐴𝑉𝑉(𝑋𝑋) = 0 ⇔ 𝑋𝑋(𝑠𝑠) = 𝑥𝑥 for all 𝑠𝑠 ∈ 𝑆𝑆

 It is risky if 𝑉𝑉𝐴𝐴𝑉𝑉(𝑋𝑋) > 0



Entropy

 Like variance, it is a measure of uncertainty
 But it measures not so much how far apart realizations of X can be
 Rather how “complex” the distribution is 
 Very elegantly, it measures how many words/messages you’d have to send on 

average to describe the draw
 Formally, 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸 = −∑𝑥𝑥 𝐸𝐸 𝑥𝑥 log[𝐸𝐸 𝑥𝑥 ]

where log base 2 is often used for elegance’s sake
 Notes:

1. If there is only one possible value, entropy is zero
2. Without constraints, entropy is maximized when all possible values of X are 

equiprobable
3. If there are two possible values entropy is maximized at 50-50, where entropy is 1 (in 

base 2)



Multiple random variables

 Data are joint observations of multiple random variables: 
age, income, spending…

 One of the main game we play is to try and use some of 
these variables to predict others

 Ex: given someone’s age and income, what is the best 
possible forecast of their spending over the next year?

 This amounts to learning about the joint probability 
distribution of these variables 

 DGPs are joint probability distributions
 Given data (a few joint observations of 𝑋𝑋,𝑌𝑌,𝑍𝑍), what can 

we say about the DGP? And with what confidence?



Covariance

 We need a notion of how two random variables X and Y are 
related:

𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋,𝑌𝑌) = ∑𝑠𝑠∈𝑆𝑆 𝑃𝑃(𝑠𝑠) (𝑋𝑋(𝑠𝑠) − 𝐸𝐸(𝑋𝑋))(𝑌𝑌(𝑠𝑠) − 𝐸𝐸(𝑌𝑌))
= 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸(𝑋𝑋))(𝑌𝑌 − 𝐸𝐸(𝑌𝑌))]

 𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋,𝑌𝑌) > 0 means that 𝑋𝑋 tends to be high when 𝑌𝑌 tends 
to be high, and vice-versa

 Note 1: if 𝑋𝑋 is risk-free, then 𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋,𝑌𝑌) = 0
 Note 2: 𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋,𝑋𝑋) = 𝑉𝑉𝐴𝐴𝑉𝑉(𝑋𝑋)
 Note 3: 𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋,𝑌𝑌) = 𝐶𝐶𝐶𝐶𝑉𝑉(𝑌𝑌,𝑋𝑋)



Example

 𝑋𝑋 pays $1 if roll of dice is even, 𝑌𝑌 pays $1 if roll of dice is 
4 or more

 Then 𝐸𝐸(𝑋𝑋) = 𝐸𝐸(𝑌𝑌) = 0.5, and:

𝐶𝐶𝐶𝐶𝑉𝑉 𝑋𝑋,𝑌𝑌 =
𝑃𝑃 𝑠𝑠 = 1 0 − .5 0 − .5 + 𝑃𝑃 𝑠𝑠 = 2 1 − .5 0 − .5 +
𝑃𝑃 𝑠𝑠 = 3 0 − .5 0 − .5 + 𝑃𝑃 𝑠𝑠 = 4 1 − .5 1 − .5 +
𝑃𝑃(𝑠𝑠 = 5)(0 − .5)(1 − .5) + 𝑃𝑃(𝑠𝑠 = 6)(1 − .5)(1 − .5)

= 1/12



Coefficient of correlation

 𝜌𝜌𝑋𝑋, 𝑌𝑌
= 𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋,𝑌𝑌) /(𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌)

 Varies from −1 to 1

 𝜌𝜌𝑋𝑋, 𝑌𝑌
= 1 means that 𝑌𝑌 = 𝑎𝑎 𝑋𝑋 + 𝑏𝑏, where 𝑎𝑎 > 0

 𝜌𝜌𝑋𝑋, 𝑌𝑌
= −1 means that 𝑌𝑌 = 𝑎𝑎 𝑋𝑋 + 𝑏𝑏, where 𝑎𝑎 < 0



Example

 𝑋𝑋 pays $1 of roll of dice is even, 𝑌𝑌 pays $1 if roll of dice is 
4 or more:

𝜌𝜌𝑋𝑋, 𝑌𝑌
=
𝐶𝐶𝐶𝐶𝑉𝑉 𝑋𝑋,𝑌𝑌
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

1
12

0.25 × 0.25
=

1
3



Independence

 𝑋𝑋 is independent of 𝑌𝑌 if knowing something about 𝑋𝑋 does 
not change the probability distribution of 𝑌𝑌

 If 𝑋𝑋 and 𝑌𝑌 are independent then 𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋,𝑌𝑌) = 0

 If 𝑋𝑋 and 𝑌𝑌 are dependent then knowing 𝑋𝑋 is useful for 
forecasting 𝑌𝑌

 We just need to understand or model that dependence in 
order to exploit it



A very useful expression

 𝑉𝑉𝐴𝐴𝑉𝑉 𝑎𝑎𝑋𝑋 + 𝑏𝑏𝑌𝑌 =

𝑎𝑎2𝑉𝑉𝐴𝐴𝑉𝑉 𝑋𝑋 + 𝑏𝑏2𝑉𝑉𝐴𝐴𝑉𝑉 𝑌𝑌 + 2𝑎𝑎𝑏𝑏𝐶𝐶𝐶𝐶𝑉𝑉 𝑋𝑋,𝑌𝑌

 In words, when you add/combine two random variables, 
the variance of the combination depends on how risky 
each variable is but also on how they co-vary with one-
another



Statistics

 Data are draws from the DGP

 Given data, what can learn about the DGP?

 In particular, can we find systematic patterns that will be 
useful for forecasting purposes?



Sample description: univariate

 Sample means, standard deviations and other such 
statistics are all “estimates” of the corresponding features 
of the DGP…

 … as long as the sample is representative

 i.e. as long as it was drawn without bias



Map from samples to DGP

 Sample mean: 

�𝑋𝑋 =
1
𝐸𝐸
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖

 An estimate of the DGP’s expectation or population mean

 Sample variance: 

𝑠𝑠2 =
1

𝐸𝐸 − 1
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − �𝑋𝑋 2

 An estimate of the DGP’s variance
 …



Multivariate inference

 Sample covariance: 

𝑠𝑠(𝑋𝑋,𝑌𝑌) =
1

𝐸𝐸 − 1
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − �𝑋𝑋 𝑌𝑌𝑖𝑖 − �𝑌𝑌

 An estimate of the DGP’s covariance

 And more generally, any regression on a sample is an 
estimate of what the same regression would produce on 
whole population



A quick aside on the Bessel Correction

 Why are sample variances and covariances divided by 𝐸𝐸 − 1
rather than 𝐸𝐸?

 This is called the Bessel correction

 We have already used the sample to estimate the mean, which 
biases estimates of dispersion down

 Dividing by 𝐸𝐸 − 1 removes that bias

 Immaterial for 𝐸𝐸 large, obviously



Law of large numbers

As long as draws are not overly correlated, sample 
estimates converge to their population counterparts



Building confidence

 Samples enable us to make statements about the 
population/DGP

 But how confident should we be about those statements?

 Statistics are random variables (different samples give 
different answers) so they have a distribution

 The dispersion in those distributions is telling us how 
confident we should be about our sample-based 
generalizations 



Key law 1: the normal distribution

 The sacrosanct bell curve, ubiquitous in nature
 Describes a continuous random variable whose distribution is completely 

described by its expectation and variance
 For any two numbers 𝑎𝑎 and 𝑏𝑏, gives the probability that the variable will fall 

in 𝑎𝑎, 𝑏𝑏
 Ex1: with 95% probability,  a draw from a normal distribution is 

within 𝟏𝟏.𝟗𝟗𝟗𝟗𝝈𝝈 of its expectation, where 𝝈𝝈 is the standard deviation
 Ex2: with 95% probability,  a draw from a normal distribution is 

less than 𝝁𝝁 + 𝟏𝟏.𝟗𝟗𝟔𝟔𝟔𝟔𝝈𝝈
 Many statistics (the mean of a suitably large and representative sample, e.g) 

are approximately normally distributed
 The standard normal distribution is the normal distribution with mean 0

and standard deviation 1



A very useful fact

 If 𝑋𝑋 is normally distributed with mean 𝜇𝜇 and standard deviation 𝜎𝜎 > 0 then

𝑍𝑍 =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

follows a standard normal distribution

 If 𝑋𝑋 is a sample statistic with known expectation 𝜇𝜇 and standard error 𝜎𝜎
then 𝑍𝑍 is called a z-score

 If statistic 𝑋𝑋 is roughly normally distributed 𝑍𝑍 should be within -1.96 and 
+1.96 in 95% of samples



Key law 2: the t-distribution
 To the naked eye, looks a lot like the standard normal 

distribution
 But it has father tails, it attaches more likelihood to draws far 

away from the mean
 Characterized by its number 𝐸𝐸 of degrees of freedom. 
 Useful for hypothesis testing:

1. The mean of 𝐸𝐸 independent draws from a normal distribution 
(properly scaled, see next chapter) follows a t-distribution with 
𝐸𝐸 − 1 degrees of freedom

2. The ratio of coefficients to standard errors in a regression is a 
statistic that is also t-distributed

3. Z-scores when 𝜎𝜎 is unknown
 When 𝐸𝐸 is large, the t-distribution becomes the standard 

normal distribution



Key law 3: the chi-squared distribution

 Distribution of the sum of the square of 𝐸𝐸 independent 
draws from a standard normal distribution

 Characterized by its number 𝐸𝐸 of degrees of freedom
 Expectation is 𝐸𝐸, variance is 2𝐸𝐸
 Useful for hypothesis testing:

1. Do two samples come the same population?
2. Are two random variables independent?



The central limit theorem

 Assume we draw a random sample of size 𝐸𝐸 from a 
population/DGP with mean 𝜇𝜇 and standard deviation 𝜎𝜎

 For 𝐸𝐸 “large”, the sample mean �̂�𝜇 is roughly normally 

distributed with mean 𝜇𝜇 and standard deviation ⁄𝜎𝜎2 𝑛𝑛



Back to our quality control example

 𝐻𝐻𝐻:    Machine true defect rate is 𝜋𝜋 ≤ 1%

 The DGP/Population’s standard deviation is 𝜋𝜋(1 − 𝜋𝜋)

 So, for a sample of size 𝐸𝐸, the standard deviation (or 

standard error) of the mean is 𝜋𝜋(1−𝜋𝜋)
𝑛𝑛
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