Risk, return, and asset prices

Corporate Finance

Building blocks (one period)

- Consider an investment that pays $\$ 100$ in one period and costs $\$ 90$ today
- The return on that investment is:

$$
r=\frac{(100-90)}{90}=\frac{100}{90}-1 \approx 11.11 \%
$$

- I need to invest \$90 to generate $\$ 100$ a period from now assuming a return of 11.11%
- In finance parlance, $\$ 90$ is the present value of $\$ 100$ a period from now assuming a discount rate of 11.11%

Building blocks (multiple periods)

- Consider an investment that pays $\$ 50$ in one period and another $\$ 50$ in two periods and costs $\$ 90$ today
- One measure of the return on this investment is the solution to:

$$
90=\frac{50}{1+r}+\frac{50}{(1+r)^{2}}
$$

which is roughly $r=7.32 \%$

- If I invest $\frac{50}{1+r}$ today for 1 year at 7.32% and then $\frac{50}{(1+r)^{2}}$ for 2 years at 7.32% I will replicate the project's cash flows
- Put another way, I can replicate the project's cash flow if I have a technology that give me 7.32% per period
- This measure of return is called the yield to maturity (YTM)

Risk

- When cash-flows are uncertain, we can measure the project's return based on expected cash flows rather than promised cash-flows
- This is the cash flows l'd get on average if I invested in a large number of projects (or a project a large number of times) with no correlation across attempts
- In that case, r is called the internal rate of return (IRR)

YTM vs IRR

- On a project with specified cash-flow promises, the YTM is the return you will get if all payments are made as planned
- No default or prepayment, in particular
- It is the IRR if all goes according to the plan
- The IRR is the return associated with expected cash flows, the cash flow one expects on average on a project of this type
- Typically,* YTM $>$ IRR

Promote structure

- A passive investor finances 90% of the $\$ 100 \mathrm{M}$ cost of a project, while an operator finances the other 10\%
- In the benchmark scenario, the project will generate $\$ 50 \mathrm{M}$ in year I and $\$ 80 \mathrm{M}$ in year 2
- Incentive clause:
- Cash flows are distributed according to the initial stake until the passive investor gets an IRR of I0\% (Tier I cash flows)
- Once enough cash flows have been generated to deliver this return, excess cash flows will be split 50-50 (Tier 2 cash flows)
- If the benchmark scenario materializes, what IRR is the operator going to get from this project?

Risk: a deeper dive

- Asset returns are subject to uncertainty
- Let S be the set of possible states of the world
- Roll of a fair dice: $S=\{1,2,3,4,5,6\}$
- An event is a subset of S
- Ex: $A=\{2,4,6\}$ is the event that the roll is even
- A probability distribution is a function that assigns probabilities to each possible state of the word
- Ex: If dice is fair, $P(s)=1 / 6$ for all $s \in\{1,2,3,4,5,6\}$

Random variables

- A random variable X on S attaches a value to each possible state of the world
- Assets (risky strings of cash flows), are random variables
- Ex: X pays $\$ 1$ if roll of dice is even, nothing otherwise:

$$
P(X=1)=P(s \in\{2,4,6\})=0.5
$$

Expectations

- The expected value of a random variable X is defined as:

$$
E(X)=\sum_{s} P(s) X(s)
$$

- X pays $\$ 1$ of roll of dice is even, nothing otherwise:

$$
\begin{aligned}
E(X)= & P(s=1) \times 0+P(s=2) \times 1 \\
& +P(s=3) \times 0+P(s=4) \times 1 \\
& +P(s=5) \times 0+P(s=6) \times 1=0.5
\end{aligned}
$$

Variances and standard deviations

- $\operatorname{VAR}(X)=\sum_{s} P(s)(X(s)-E(X))^{2}$

$$
=E[X-E(X)] 2
$$

- X pays $\$ \mathrm{I}$ of roll of dice is even, nothing otherwise:

$$
\begin{aligned}
& \operatorname{VAR}(X)= \\
& P(s=1)(0-0.5)^{2}+P(s=2)(1-0.5)^{2} \\
&+ P(s=3)(0-0.5)^{2}+P(s=4)(1-0.5)^{2} \\
&+ P(s=5)(0-0.5) 2+P(s=6)(1-0.5) 2
\end{aligned}
$$

- The standard deviation of X is the square root of its variance

Variances and standard deviations

$$
\begin{aligned}
\operatorname{VAR}(X) & =\sum_{s} P(s)(X(s)-E(X))^{2} \\
& =E[X-E(X)] 2
\end{aligned}
$$

- X pays $\$ 1$ of roll of dice is even, nothing otherwise:

$$
\begin{aligned}
\operatorname{VAR}(X) & =P(s=1)(0-0.5)^{2}+P(s=2)(1-0.5)^{2} \\
& +P(s=3)(0-0.5)^{2}+P(s=4)(1-0.5)^{2} \\
& +P(s=5)(0-0.5)^{2}+P(s=6)(1-0.5) 2 \\
& =0.25
\end{aligned}
$$

- The standard deviation of X is the square root of its variance:

$$
\sigma_{\mathrm{x}}=\sqrt{\operatorname{VAR}(\mathrm{X})}
$$

Risk

- A random variable X is risk-free if

$$
\operatorname{VAR}(X)=0 \Leftrightarrow X(s)=x \text { for all } s \in S
$$

- It is risky if $\operatorname{VAR}(X)>0$
- The closest risk we have to risk-free asset in the US (the world?) is a T-bill

Covariance

- We need a notion of how two random variables X and Y are related:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\sum_{s} P(s)(X(s)-E(X))(Y(s)-E(Y)) \\
& =E[(X-E(X))(Y-E(Y))]
\end{aligned}
$$

- $\operatorname{COV}(X, Y)>0$ means that X tends to be high when Y tends to be high, and vice-versa
- Note I: if X is risk-free, then $\operatorname{COV}(X, Y)=0$
- Note 2: $\operatorname{COV}(X, X)=\operatorname{VAR}(X)$
- Note 3: $\operatorname{COV}(X, Y)=\operatorname{COV}(Y, X)$

Example

- X pays $\$ 1$ if roll of dice is even, Y pays $\$ 1$ if roll of dice is 4 or more
- Then $E(X)=E(Y)=0.5$, and:

$$
\begin{aligned}
& \operatorname{COV}(X, Y)= \\
& \quad P(s=1)(0-0.5)(0-0.5)+P(s=2)(1-0.5)(0-0.5) \\
& +P(s=3)(0-0.5)(0-0.5)+P(s=4)(1-0.5)(1-0.5) \\
& +P(s=5)(0-0.5)(1-0.5)+P(s=6)(1-0.5)(1-0.5) \\
& \quad=1 / 12
\end{aligned}
$$

Coefficient of correlation

- $\rho_{X, Y}=\operatorname{COV}(X, Y) /\left(\sigma_{X} \sigma_{Y}\right)$
- Varies from -1 to 1
- $\rho_{X, Y}=1$ means that $Y=a X+b$, where $a>0$
- $\rho_{X, Y}=-1$ means that $Y=a X+b$, where $a<0$

Example

- X pays $\$ 1$ of roll of dice is even, Y pays $\$ 1$ if roll of dice is 4 or more
- $\rho_{X, Y}=\operatorname{Cov}(X, Y) /\left(\sigma_{X} \sigma_{Y}\right)=\frac{\frac{1}{12}}{\sqrt{0.25 \times 0.25}}=\frac{1}{3}$

Independence

- X is independent of Y if knowing something about X does not change the probability distribution of Y
- If X and Y are independent then $\operatorname{COV}(X, Y)=0$
- If X and Y are dependent then knowing X is useful for forecasting Y
- We just need to understand or model that dependence in order to exploit it

A very useful expression

- $\operatorname{VAR}(a X+b Y)=$

$$
a^{2} \operatorname{VAR}(X)+b^{2} V A R(Y)+2 a b \operatorname{COV}(X, Y)
$$

- In words, when you add/combine two risky assets, the variance of the resulting portfolio depends on how risky each asset is but also on how they co-vary with oneanother

Mixing assets

- Let a and b be numbers, and X and Y be the returns on two assets
- Investing a in X and b in Y returns $a X(s)+b Y(s)$ in state s
- (a, b), in this context, is called a portfolio
- We write $a X+b Y$ for the resulting random variable

Big facts

- $E(a X+b Y)=a E(X)+b E(Y)$
- $\operatorname{VAR}(a X)=a^{2} \operatorname{VAR}(X) \Leftrightarrow \sigma_{a X}=a \sigma_{X}$
- $\operatorname{VAR}(a X+b Y)=a^{2} \operatorname{VAR}(X)+b^{2} \operatorname{VAR}(X)+$ $2 a b \operatorname{COV}(X, Y)$
- $\operatorname{VAR}(0.5 X+0.5 Y)=$
$0.25 \operatorname{VAR}(X)+0.25 \operatorname{VAR}(X)+0.5 \operatorname{COV}(X, Y)$

Diversification

- Combining risky assets reduces risk unless $\rho_{X, Y}=1$
- Returns on risky assets that do not covary perfectly tend to offset each-other, at least a little bit
- If they co-vary negatively, diversification is even greater
- If you bet the same amount on both red and black at the roulette, you're taking on virtually no risk

More facts

- $\operatorname{COV}(a X+b Y, Z)=a \operatorname{COV}(X, Z)+b \operatorname{COV}(Y, Z)$
- And the big monster:

$$
\operatorname{VAR}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}} \operatorname{COV}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)
$$

Towards CAPM

- Consider an investor who can split her wealth across three risky assets:

$$
\begin{aligned}
& \text { Bonds }\left(E\left(r^{B}\right)=6 \%, \sigma\left(r^{B}\right)=7 \%\right) \\
& \text { Stocks }\left(E\left(r^{S}\right)=15 \%, \sigma\left(r^{S}\right)=10 \%\right) \\
& \text { Real Estate }\left(E\left(r^{E}\right)=6 \%, \sigma\left(r^{E}\right)=7 \%\right)
\end{aligned}
$$

- Covariance matrix (in percentage points) is:

$$
\left[\begin{array}{ccc}
49 & 10 & -10 \\
10 & 100 & 10 \\
-10 & 10 & 49
\end{array}\right]
$$

- She likes expected returns, she dislikes variance, she doesn't care about anything else
- That is, she has mean-variance preferences and is risk-averse

Feasible risk return combinations

See Python notebook, movie version

Efficient frontier (no risk-free asset)

Adding a risk-free asset

Two-portfolio theorem

- With a risk-free asset, efficient set begins at portfolio that puts all wealth in risk-free asset, and touch the risky part of the feasible set in exactly one point
- That point is called the market portfolio
- Theorem: In equilibrium, all investors hold a portfolio made of a positive investment in the market portfolio, and a positive or negative investment in the risk-free asset

Market portfolio

- All risky assets have positive weight in it
- The risky-part of all investors portfolios is the same, namely the market portfolio
- It follows that the market portfolio can be computed as the fraction of total risky holdings in a given asset
- Decent practical proxy: capitalization-weighted index, such as the S\&P500

Capital Asset Pricing Model (CAPM)

- What should be the average return on asset i in equilibrium? Equivalently, what should be its price?
- Intuitively, riskier assets should command a higher return
- Investors should be compensated for the risk a given asset contributes to their portfolio
- This contribution depends on how it co-varies with all elements of the portfolio, including itself

Capital Asset Pricing Model (CAPM)

- Theorem:

$$
E\left(r_{i}\right)=r_{f}+\beta_{i}\left[E\left(r_{m}\right)-r_{f}\right]
$$

where:

Capital Asset Pricing Model (CAPM)

- Theorem:

$$
E\left(r_{i}\right)=r_{f}+\beta_{i}\left[E\left(r_{m}\right)-r_{f}\right]
$$

where:

$$
\beta_{\mathrm{i}}=\frac{\operatorname{COV}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{m}}\right)}{\operatorname{VAR}\left(\mathrm{r}_{\mathrm{m}}\right)}
$$

CAPM

- Investors want to be compensated for a very specific form of risk: the asset's beta
- Return on a given asset is the risk-free rate plus a risk premium
- Risk premium is the product of beta (the quantity of risk) and $E\left(r_{m}\right)-r_{f}$ (the market price of risk)

CAPM: a statistical perspective

- What return should I expect from IBM given how I expect the overall market (the S\&P500) to perform?
- Assume (heroically) that IBM's beta is time-invariant
- Data: historical returns for IBM and S\&P500
- Would any other data be useful? CAPM says no
- In fact, it says that the "best" model for our purposes is a simple linear regression model:

$$
r_{I B M}-r_{f}=\alpha+\beta\left(r_{S \& P}-r_{f}\right)+\varepsilon
$$

where ε is noise (i.e. mean zero and independent of everything)

CAPM: it fails bigly

- Augment CAPM regression to:

$$
\left.r_{i}-r_{f}=\alpha_{i}+\beta_{i}\left(r_{m}-r_{f}\right)+\beta_{S M L} S M L\right)+\beta_{H M L}(H M L)+\varepsilon_{i}
$$

where:
SML = difference between returns on diversified portfolios of small and large capitalization stocks
HML= difference between returns on diversified portfolios of high and low B / M stocks
" The asset/portfolios empirical intercept (the"alpha") is the return that can't be explained by exposure to FF factors

- Estimates of factor loadings (the betas) together with forecasts for expected factor values over holding period can be used to calibrate required returns
- Data:Fama-French library
- See Python notebook
"There is a long tradition in finance that regards high Sharpe ratios as good deals that are unlikely to survive... we assume that the investor would take any opportunity with a Sharpe ratio twice that of the S\&P 500."

John Cochrane and Jesus Saa-Requejo (Journal of Political Economy, 2000)

