
Hypothesis testing

Data to decisions



The idea

 Null hypothesis:
𝐻𝐻0: the DGP/population has property 𝑃𝑃

 Under the null, a sample statistic has a known distribution

 If, under that that distribution, the value of the statistic is unlikely, reject the 
null



Road map

 This chapter illustrates the general procedure by discussing some of the most 
common tests people perform:
1. Simple mean tests
2. Mean comparison tests
3. Frequency (or proportion) tests
4. Goodness of fit tests
5. Independence tests

 The next chapter applies the same procedure to the regression context



Simple mean test

 You believe that your customer base has mean income $40,000

 A recent, representative survey of 1,000 customers showed their mean 
income to be $37,000, with a standard deviation of $2,000

 Is it time to revise your beliefs?



Mean test design

 𝐻𝐻0: 𝜇𝜇 = $40,000

 If we also knew 𝜎𝜎 (the population standard deviation) we would know that 
sample mean �̂�𝜇 is roughly normally distributed with mean $40,000 and 
standard deviation 𝜎𝜎

𝑛𝑛

 But we don’t



The unknown sigma problem
 �𝜎𝜎 = 2,000 is an estimate of σ
 It too is normally distributed by the CLT
 Test statistic: 

𝑇𝑇 =
�̂�𝜇 − 𝜇𝜇

��𝜎𝜎 𝑛𝑛

 Under the null, this has a t-distribution with 𝑛𝑛 − 1 degrees of freedom 
 Standard normal if 𝑛𝑛 large
 Reject, basically, if 𝑇𝑇 > 1.96 or  𝑇𝑇 < −1.96
 Or look up t-tables for more precision.



Confidence intervals

 ��𝜎𝜎 𝑛𝑛 is called the standard error of the mean

 For 𝑛𝑛 large enough and before we draw our data, with 95% confidence we can say that 
the population mean 𝜇𝜇 should be in:

�̂�𝜇 − 1.96 ��𝜎𝜎 𝑛𝑛 , �̂�𝜇 + 1.96 ��𝜎𝜎 𝑛𝑛

 This is called a confidence interval for the mean 

 If 𝜇𝜇 is outside this interval, reject the null with 95% confidence



General structure of t-tests

 When an estimate follows a normal distribution, then 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝐸𝐸𝑛𝑛𝑛𝑛𝐸𝐸
𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠 𝐸𝐸𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 𝑒𝑒𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

follows a t-distribution

 Only degrees of freedom need to be established and that is test-specific

 But, any time you have a large, representative sample, the distribution is 
approximately the standard normal so you are good to go 



Remark

 In our current example, the odds that, literally, 𝜇𝜇 = $40,000 , are, literally, zero

 Failing to reject that hypothesis means, simply, that that guess cannot be 
dismissed in favor of distant alternatives

 For instance, if you claim that 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 is positive and large, then you should 
be able to reject the hypothesis that 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 = 0

 That’s putting your theory to a test it should pass with flying colors



Critical values

 We can design a test by choosing a significance level  (or size or alpha)
 Say we set 𝛼𝛼 = 5%
 Then we can picks a critical value 𝑇𝑇 such that 𝑃𝑃 𝑇𝑇 ≥ 𝑇𝑇 ≤ 5% if the null 

hypothesis is correct
 Reject if 𝑇𝑇 > 𝑇𝑇
 For normally distributed statistics: 𝑇𝑇 = 𝜇𝜇 + 1.655𝜎𝜎
 Or we could pick two values 𝑇𝑇 and 𝑇𝑇 such that 𝑃𝑃 𝑇𝑇 ≥ 𝑇𝑇 𝑒𝑒𝑠𝑠 𝑇𝑇 ≤ 𝑇𝑇 ≤ 5%
 Reject if 𝑇𝑇 > 𝑇𝑇 or 𝑇𝑇 < 𝑇𝑇
 For normally distributed statistics, e.g.: 𝑇𝑇 = 𝜇𝜇 + 1.96𝜎𝜎, 𝑇𝑇 = 𝜇𝜇 − 1.96𝜎𝜎



Critical values vs p-values

 𝑝𝑝 − 𝑣𝑣𝐸𝐸𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸 look at the outcome of the test and then calculate its probability 
in some sense or other

 For instance, in the context of one-sided tests, a particular sample gives you a 
statistic value of �𝑇𝑇

 The p-value is 𝑃𝑃 𝑇𝑇 ≥ �𝑇𝑇
 Ideally, you should design a test fully ex-ante (choose its size, in particular) and 

then let the data speak



Type 1 errors

 There is a risk that we may reject a null hypothesis when it is, in fact, correct

 When we use a 5% level to compute critical values, we create a test that has a 
5% chance of producing a type 1 error

 This is often termed a “false positive” since rejecting 𝐻𝐻𝐻 is often viewed as 
“finding an effect.”



Type 2 errors

 There is a risk that we may fail to reject a null hypothesis when it is, in fact, 
incorrect 

 The problem with this language is that since null hypotheses are usually quite 
specific, incorrect can mean a whole lot of different things

 It also means that 𝐻𝐻0 taken literally, is often false (see remark slide)
 So how do people measure the risk of type 2 errors in practice?
 Answer: in a massively ad-hoc way
 For instance, in the context of one-sided tests for means with critical value �𝑇𝑇,

the risk of type 2 error is typically computed as the risk of getting a rejection 
when the truth is at �𝑇𝑇



Mean comparison

 A university wants to know if it has a gender wage-gap problem
 It obtains a sample of male and female employees with similar education, age 

and occupation
 𝑛𝑛1 females, 𝑛𝑛2 males
 Mean income among women $97,000, stdev is $1,000
 Mean income among men $100,000, stdev is $1,500
 𝐻𝐻0: 𝜇𝜇1 = 𝜇𝜇2
 Can it be rejected?



Test statistic
 𝑇𝑇 = �𝜇𝜇2−�𝜇𝜇1

�𝜎𝜎1
2
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+
�𝜎𝜎2
2

𝑛𝑛2

is t-distributed

 The expression for degrees of freedom looks nasty:
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 But that’s why we have computers (Excel: ttest)
 What’s more, if �𝜎𝜎1 ≈ �𝜎𝜎2, then degrees of freedom are roughly 𝑛𝑛1 + 𝑛𝑛2 − 2
 And, if 𝑛𝑛1 and 𝑛𝑛2 are large, you can assume a standard normal distribution so, basically, reject 
𝑇𝑇 > 1.96 or  𝑇𝑇 < −1.96



Frequency tests (the easiest of them all)

 𝐻𝐻0:    Machine true defect rate is 𝜋𝜋 = 1%

 The DGP/Population’s standard deviation is 𝜋𝜋(1 − 𝜋𝜋)

 So, for a sample of size 𝑛𝑛, the standard deviation (or standard error) of the 

mean is 𝜋𝜋(1−𝜋𝜋)
𝑛𝑛



Goodness of fit tests

 𝐻𝐻0:    Data came from process X

 Example:  Are the 3,000 draws in data2D2D.xlsx from X?

 If they were, I’d expect to see around 300 draws of 90, instead I see just 69 or them

 How far are the draws I got from what I’d expect under 𝐻𝐻𝐻?

 If they are farther than what sample uncertainty alone can reasonably explain, reject



Chisquare distance

 Data (O for “observed”, E for “expected”):

Value Sample outcome (O) Expected ( E) (O-E)^2/E

90 69 300 177.87

100 1,969 1,500 146.64

110 962 1,200 47.20

Total 3,000 3,000 371.71



Chisquare goodness of fit test

 If 𝐻𝐻0were correct, we’d expect the Chisquare distance to be small

 Specifically, if 𝐻𝐻0is correct, that distance roughly follows a Chisquare distribution 

 Degrees of freedom =  (number of values -1) = 2 in this example

 A look at a Chisquare table says that 95% of the time a draw from such a distribution 
should be below 5.991

 We got a 371.71

 Reject 𝐻𝐻0with high confidence



Chisquare independence tests

 𝐻𝐻0:    Y is independent from X

 Ex: Is spending independent of gender in a particular population?

 If you have detailed data on spending from a good sample, you could run a 
regression

 But what if I only have coarse/categorical data?



Example

 Assume we get the following data from a representative sample:

Spending Male (O) Female (O) All Frequency

<50K 700 601 1,301 0.34

50-99 513 557 1,070 0.28

100-199 410 518 928 0.24

200 or more 227 309 536 0.14

Total 1,850 1,985 3,835 1



Expected outcome
 If Spending were independent of Gender, the frequency of observations in 

each spending group should be similar for both groups…
 … hence the same as in the overall sample
 In other words, I’d expect something close to:

Spending Male (E) Female (E)

<50K 627.60 673.40

50-99 516.17 553.83

100-199 447.67 480.33

200 or more 258.57 277.43

Total 1,850 1,985



Chisquare distance

 The chisquare distance between observed and expected is:

 For a total distance of around 29.74

Spending Male (O-E)^2/E Female (O-E)^2/E

<50K 8.35 7.78

50-99 0.02 0.02

100-199 3.17 2.95

200 or more 3.85 3.59

Total 15.39 14.34



Chisquare independence tests

 𝐻𝐻0:    Spending is independent of gender

 If 𝐻𝐻0 is correct, the chisquare distance roughly follows a chisquare distribution

 Degrees of freedom = (number of Spending categories -1) times (number of Gender 
categories -1) = 3 

 A look at a Chisquare table shows that 95% of the time a draw from a Chisquare
distribution with 3 degrees of freedom should be below 7.815

 We got 29.74, reject 𝐻𝐻0with confidence



The bootstrap
 Classical hypothesis testing relies on a lot of theory
 There is an alternative procedure that works for any statistic, however 

complicated, and requires few if any large sample assumptions: bootstrapping
 Idea: 

1. use available data to generate different samples hence a distribution of the statistic
2. use that distribution to produce standard errors and/or produce confidence 

intervals

 One assumption: the sample is representative of the population
 An example will help illustrate the power of bootstrapping
 More generally, modern stats is putting ever more emphasis on methods 

which, like bootstrapping, require little to no theory
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