
Hypothesis testing

Data to decisions



The idea

 Null hypothesis:
𝐻𝐻0: the DGP/population has property 𝑃𝑃

 Under the null, a sample statistic has a known distribution

 If, under that that distribution, the value of the statistic is unlikely, reject the 
null



Road map

 This chapter illustrates the general procedure by discussing some of the most 
common tests people perform:
1. Simple mean tests
2. Mean comparison tests
3. Frequency (or proportion) tests
4. Goodness of fit tests
5. Independence tests

 The next chapter applies the same procedure to the regression context



Simple mean test

 You believe that your customer base has mean income $40,000

 A recent, representative survey of 1,000 customers showed their mean 
income to be $37,000, with a standard deviation of $2,000

 Is it time to revise your beliefs?



Mean test design

 𝐻𝐻0: 𝜇𝜇 = $40,000

 If we also knew 𝜎𝜎 (the population standard deviation) we would know that 
sample mean �̂�𝜇 is roughly normally distributed with mean $40,000 and 
standard deviation 𝜎𝜎

𝑛𝑛

 But we don’t



The unknown sigma problem
 �𝜎𝜎 = 2,000 is an estimate of σ
 It too is normally distributed by the CLT
 Test statistic: 

𝑇𝑇 =
�̂�𝜇 − 𝜇𝜇

��𝜎𝜎 𝑛𝑛

 Under the null, this has a t-distribution with 𝑛𝑛 − 1 degrees of freedom 
 Standard normal if 𝑛𝑛 large
 Reject, basically, if 𝑇𝑇 > 1.96 or  𝑇𝑇 < −1.96
 Or look up t-tables for more precision.



Confidence intervals

 ��𝜎𝜎 𝑛𝑛 is called the standard error of the mean

 For 𝑛𝑛 large enough and before we draw our data, with 95% confidence we can say that 
the population mean 𝜇𝜇 should be in:

�̂�𝜇 − 1.96 ��𝜎𝜎 𝑛𝑛 , �̂�𝜇 + 1.96 ��𝜎𝜎 𝑛𝑛

 This is called a confidence interval for the mean 

 If 𝜇𝜇 is outside this interval, reject the null with 95% confidence



General structure of t-tests

 When an estimate follows a normal distribution, then 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝐸𝐸𝑛𝑛𝑛𝑛𝐸𝐸
𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠 𝐸𝐸𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 𝑒𝑒𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

follows a t-distribution

 Only degrees of freedom need to be established and that is test-specific

 But, any time you have a large, representative sample, the distribution is 
approximately the standard normal so you are good to go 



Remark

 In our current example, the odds that, literally, 𝜇𝜇 = $40,000 , are, literally, zero

 Failing to reject that hypothesis means, simply, that that guess cannot be 
dismissed in favor of distant alternatives

 For instance, if you claim that 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 is positive and large, then you should 
be able to reject the hypothesis that 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 = 0

 That’s putting your theory to a test it should pass with flying colors



Critical values

 We can design a test by choosing a significance level  (or size or alpha)
 Say we set 𝛼𝛼 = 5%
 Then we can picks a critical value 𝑇𝑇 such that 𝑃𝑃 𝑇𝑇 ≥ 𝑇𝑇 ≤ 5% if the null 

hypothesis is correct
 Reject if 𝑇𝑇 > 𝑇𝑇
 For normally distributed statistics: 𝑇𝑇 = 𝜇𝜇 + 1.655𝜎𝜎
 Or we could pick two values 𝑇𝑇 and 𝑇𝑇 such that 𝑃𝑃 𝑇𝑇 ≥ 𝑇𝑇 𝑒𝑒𝑠𝑠 𝑇𝑇 ≤ 𝑇𝑇 ≤ 5%
 Reject if 𝑇𝑇 > 𝑇𝑇 or 𝑇𝑇 < 𝑇𝑇
 For normally distributed statistics, e.g.: 𝑇𝑇 = 𝜇𝜇 + 1.96𝜎𝜎, 𝑇𝑇 = 𝜇𝜇 − 1.96𝜎𝜎



Critical values vs p-values

 𝑝𝑝 − 𝑣𝑣𝐸𝐸𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸 look at the outcome of the test and then calculate its probability 
in some sense or other

 For instance, in the context of one-sided tests, a particular sample gives you a 
statistic value of �𝑇𝑇

 The p-value is 𝑃𝑃 𝑇𝑇 ≥ �𝑇𝑇
 Ideally, you should design a test fully ex-ante (choose its size, in particular) and 

then let the data speak



Type 1 errors

 There is a risk that we may reject a null hypothesis when it is, in fact, correct

 When we use a 5% level to compute critical values, we create a test that has a 
5% chance of producing a type 1 error

 This is often termed a “false positive” since rejecting 𝐻𝐻𝐻 is often viewed as 
“finding an effect.”



Type 2 errors

 There is a risk that we may fail to reject a null hypothesis when it is, in fact, 
incorrect 

 The problem with this language is that since null hypotheses are usually quite 
specific, incorrect can mean a whole lot of different things

 It also means that 𝐻𝐻0 taken literally, is often false (see remark slide)
 So how do people measure the risk of type 2 errors in practice?
 Answer: in a massively ad-hoc way
 For instance, in the context of one-sided tests for means with critical value �𝑇𝑇,

the risk of type 2 error is typically computed as the risk of getting a rejection 
when the truth is at �𝑇𝑇



Mean comparison

 A university wants to know if it has a gender wage-gap problem
 It obtains a sample of male and female employees with similar education, age 

and occupation
 𝑛𝑛1 females, 𝑛𝑛2 males
 Mean income among women $97,000, stdev is $1,000
 Mean income among men $100,000, stdev is $1,500
 𝐻𝐻0: 𝜇𝜇1 = 𝜇𝜇2
 Can it be rejected?



Test statistic
 𝑇𝑇 = �𝜇𝜇2−�𝜇𝜇1
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 The expression for degrees of freedom looks nasty:
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 But that’s why we have computers (Excel: ttest)
 What’s more, if �𝜎𝜎1 ≈ �𝜎𝜎2, then degrees of freedom are roughly 𝑛𝑛1 + 𝑛𝑛2 − 2
 And, if 𝑛𝑛1 and 𝑛𝑛2 are large, you can assume a standard normal distribution so, basically, reject 
𝑇𝑇 > 1.96 or  𝑇𝑇 < −1.96



Frequency tests (the easiest of them all)

 𝐻𝐻0:    Machine true defect rate is 𝜋𝜋 = 1%

 The DGP/Population’s standard deviation is 𝜋𝜋(1 − 𝜋𝜋)

 So, for a sample of size 𝑛𝑛, the standard deviation (or standard error) of the 

mean is 𝜋𝜋(1−𝜋𝜋)
𝑛𝑛



Goodness of fit tests

 𝐻𝐻0:    Data came from process X

 Example:  Are the 3,000 draws in data2D2D.xlsx from X?

 If they were, I’d expect to see around 300 draws of 90, instead I see just 69 or them

 How far are the draws I got from what I’d expect under 𝐻𝐻𝐻?

 If they are farther than what sample uncertainty alone can reasonably explain, reject



Chisquare distance

 Data (O for “observed”, E for “expected”):

Value Sample outcome (O) Expected ( E) (O-E)^2/E

90 69 300 177.87

100 1,969 1,500 146.64

110 962 1,200 47.20

Total 3,000 3,000 371.71



Chisquare goodness of fit test

 If 𝐻𝐻0were correct, we’d expect the Chisquare distance to be small

 Specifically, if 𝐻𝐻0is correct, that distance roughly follows a Chisquare distribution 

 Degrees of freedom =  (number of values -1) = 2 in this example

 A look at a Chisquare table says that 95% of the time a draw from such a distribution 
should be below 5.991

 We got a 371.71

 Reject 𝐻𝐻0with high confidence



Chisquare independence tests

 𝐻𝐻0:    Y is independent from X

 Ex: Is spending independent of gender in a particular population?

 If you have detailed data on spending from a good sample, you could run a 
regression

 But what if I only have coarse/categorical data?



Example

 Assume we get the following data from a representative sample:

Spending Male (O) Female (O) All Frequency

<50K 700 601 1,301 0.34

50-99 513 557 1,070 0.28

100-199 410 518 928 0.24

200 or more 227 309 536 0.14

Total 1,850 1,985 3,835 1



Expected outcome
 If Spending were independent of Gender, the frequency of observations in 

each spending group should be similar for both groups…
 … hence the same as in the overall sample
 In other words, I’d expect something close to:

Spending Male (E) Female (E)

<50K 627.60 673.40

50-99 516.17 553.83

100-199 447.67 480.33

200 or more 258.57 277.43

Total 1,850 1,985



Chisquare distance

 The chisquare distance between observed and expected is:

 For a total distance of around 29.74

Spending Male (O-E)^2/E Female (O-E)^2/E

<50K 8.35 7.78

50-99 0.02 0.02

100-199 3.17 2.95

200 or more 3.85 3.59

Total 15.39 14.34



Chisquare independence tests

 𝐻𝐻0:    Spending is independent of gender

 If 𝐻𝐻0 is correct, the chisquare distance roughly follows a chisquare distribution

 Degrees of freedom = (number of Spending categories -1) times (number of Gender 
categories -1) = 3 

 A look at a Chisquare table shows that 95% of the time a draw from a Chisquare
distribution with 3 degrees of freedom should be below 7.815

 We got 29.74, reject 𝐻𝐻0with confidence



The bootstrap
 Classical hypothesis testing relies on a lot of theory
 There is an alternative procedure that works for any statistic, however 

complicated, and requires few if any large sample assumptions: bootstrapping
 Idea: 

1. use available data to generate different samples hence a distribution of the statistic
2. use that distribution to produce standard errors and/or produce confidence 

intervals

 One assumption: the sample is representative of the population
 An example will help illustrate the power of bootstrapping
 More generally, modern stats is putting ever more emphasis on methods 

which, like bootstrapping, require little to no theory
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