Regression analysis: a primer

Data to decisions



The universal mathematics of linear regressions

Take two random variables X and Y with finite variance

Then it is always possible to write:
Y=a+bX+ ¢
where: E(¢) = 0and COV(X,e) =0

The model a + bX is the best possible linear relationship between Y and X in
the sense that VAR (¢) is the lowest it can possibly be



R-squared (“goodness of {it”)

Since COV (X, ) =0,
VAR(Y) = b2VAR(X) + VAR(¢)

Total Variance = Variance explained by the model + Residual Variance

Then,
b*VAR(X)
~ VAR(Y)
tells us what fraction of the variance of Y is “explained” by the model
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Regressions in statistics

Assume we get a sample X;, Y; of joints observations of/draws from X and Y fori =
1,2,..n

We can plot the resulting data with Y on the vertical axis and fit the best possible line
through these dots

This gives us estimates @ and b of a and b
Furthermore, by the law of large numbers, @ - a and b — b as n gets large
So now if you give me any particular X | can forecast Y as @ + bX

This is the best linear forecast | can make, at least in sample



Confidence and prediction intervals for linear forecasts

How confident should | be in my forecast!?
After all:

| am uncertain about a and b

| don’t know what € draw | am going to get
The first issue affects my ability to know E (Y |X)
Confidence intervals reflect only that first source of uncertainty

My ability to forecast the Y value of one specific new observation is also
limited by the € problem

Prediction intervals reflect both sources of uncertainty
They tend to be very, very large even in pretty good R? situations



Significance test

HO:b =0
Can HO be rejected!?

Under the assumption that Y is normally distributed, the standard error 0(13) of b
can be computed...

.and T = ——= follows a t-distribution with n — 2 degrees of freedom

0()

Basically and with enough data, reject HOif T > 1.96 or T < —1.96



Classical assumptions

Classical regression based inference relies on three main assumptions:
The error terms are normally distributed
They are independent of X (homoscedasticity)

They are independent from one another

Errors that satisfy those assumptions are called spherical

If they do then all the tests and confidence intervals we have developed so far
are valid



Diagnosis

= The obvious ways to detect issues are to
plot residuals and look at the shape of the distribution
plot residuals against X and look for patterns

= There are formal tests that automate this



Broad remedies

Play with the model specification (go from Y to logY to deal with curvature
issues...)

Look for missing variables

Understand the pattern in error dependence and use GLS



Outliers

Sometimes your plots will show observations that are way off, that visibly
stand alone

There are tests that detect those
Two possibilities: contaminated case or rare case

In case |, drop or correct the observation, obviously, but make sure the same
contamination does not pollute the rest of your data

In case 2, you need to model rare case and typical case separately, maybe by
mixing models

Sometimes, (in value-at-risk management, say, or mortgage design) it’s all about
rare cases



Multivariate case

If we add more explanatory variables, nothing of importance changes
Sa)',Y= a+b1X+bzz+ E

We can only improve fit by adding variables (but fit is not the goal, more on
that in next chapter)

Now we can test joint hypothesis, like HO: b; = b,, using what’s called an F-
test, which any stats package can perform for you

And we can still test the individual significance of each coefficient using t-tests



Forecasting with log transforms

When In(Y) is the dependent variable, the error in logs is minimized
Negative errors are more penalized than positive errors (asymmetric loss function)
exp E(In(Y)|X) < E(Y|X), afact known as Jensen’s inequality

If 1) the model is well specified and 2) errors are spherical, then an unbiased forecast is:

exp E(In(Y) + s2/2 |X)
where s? is Var(é)

Remark |:bias is often small

Remark 2: correction above may do more harm than good when either assumption is badly violated
Remark 3: prediction intervals are correct under naive transform, though they can be improved
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