
Regression analysis: a primer

Data to decisions



The universal mathematics of linear regressions

 Take two random variables 𝑋𝑋 and 𝑌𝑌 with finite variance

 Then it is always possible to write:

𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝜀𝜀

where: 𝐸𝐸 𝜀𝜀 = 0 and 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋, 𝜀𝜀 = 0

 The model 𝑎𝑎 + 𝑏𝑏𝑏𝑏 is the best possible linear relationship between 𝑌𝑌 and 𝑋𝑋 in 
the sense that 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀) is the lowest it can possibly be



R-squared (“goodness of fit”)

 Since 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋, 𝜀𝜀 = 0, 
𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 = 𝑏𝑏2𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀)

 Total Variance = Variance explained by the model + Residual Variance

 Then, 

𝑅𝑅2 =
𝑏𝑏2𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋
𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)

tells us what fraction of the variance of 𝑌𝑌 is “explained” by the model



Regressions in statistics

 Assume we get a sample 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 of joints observations of/draws from  𝑋𝑋 and 𝑌𝑌 for 𝑖𝑖 =
1,2, …𝑛𝑛

 We can plot the resulting data with 𝑌𝑌 on the vertical axis and fit the best possible line 
through these dots

 This gives us estimates �𝑎𝑎 and �𝑏𝑏 of 𝑎𝑎 and 𝑏𝑏

 Furthermore, by the law of large numbers, �𝑎𝑎 → 𝑎𝑎 and �𝑏𝑏 → 𝑏𝑏 as 𝑛𝑛 gets large

 So now if you give me any particular 𝑋𝑋 I can forecast 𝑌𝑌 as �𝑎𝑎 + �𝑏𝑏𝑋𝑋

 This is the best linear forecast I can make, at least in sample



Confidence and prediction intervals for linear forecasts

 How confident should I be in my forecast? 
 After all:

1. I am uncertain about 𝑎𝑎 and 𝑏𝑏
2. I don’t know what 𝜀𝜀 draw I am going to get

 The first issue affects my ability to know 𝐸𝐸(𝑌𝑌|𝑋𝑋)
 Confidence intervals reflect only that first source of uncertainty
 My ability to forecast the 𝑌𝑌 value of one specific new observation is also 

limited by the 𝜀𝜀 problem
 Prediction intervals reflect both sources of uncertainty
 They tend to be very, very large even in pretty good 𝑅𝑅2 situations 



Significance test

 𝐻𝐻𝐻: 𝑏𝑏 = 0

 Can 𝐻𝐻𝐻 be rejected?

 Under the assumption that 𝑌𝑌 is normally distributed, the standard error 𝜎𝜎 �𝑏𝑏 of �𝑏𝑏
can be computed…

 … and T =
�𝑏𝑏

𝜎𝜎 �𝑏𝑏
follows a t-distribution with 𝑛𝑛 − 2 degrees of freedom

 Basically and with enough data, reject 𝐻𝐻𝐻 if 𝑇𝑇 > 1.96 or 𝑇𝑇 < −1.96



Classical assumptions

 Classical regression based inference relies on three main assumptions:
1. The error terms are normally distributed
2. They are independent of 𝑋𝑋 (homoscedasticity)
3. They are independent from one another

 Errors that satisfy those assumptions are called spherical

 If they do then all the tests and confidence intervals we have developed so far 
are valid 



Diagnosis

 The obvious ways to detect issues are to
1. plot residuals and look at the shape of the distribution
2. plot residuals against 𝑋𝑋 and look for patterns

 There are formal tests that automate this



Broad remedies

 Play with the model specification (go from 𝑌𝑌 to  log𝑌𝑌 to deal with curvature 
issues…) 

 Look for missing variables
 Understand the pattern in error dependence and use GLS



Outliers 

 Sometimes your plots will show observations that are way off, that visibly 
stand alone

 There are tests that detect those
 Two possibilities: contaminated case or rare case 
 In case 1, drop or correct the observation, obviously, but make sure the same 

contamination does not pollute the rest of your data
 In case 2, you need to model rare case and typical case separately, maybe by 

mixing models
 Sometimes, (in value-at-risk management, say, or mortgage design) it’s all about 

rare cases



Multivariate case
 If we add more explanatory variables, nothing of importance changes

 Say, 𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏1𝑋𝑋 + 𝑏𝑏2𝑍𝑍 + 𝜀𝜀

 We can only improve fit by adding variables (but fit is not the goal, more on 
that in next chapter)

 Now we can test joint hypothesis, like 𝐻𝐻𝐻: 𝑏𝑏1 = 𝑏𝑏2, using what’s called an F-
test, which any stats package can perform for you

 And we can still test the individual significance of each coefficient using t-tests



Forecasting with log transforms

 When ln(𝑌𝑌) is the dependent variable, the error in logs is minimized
 Negative errors are more penalized than positive errors (asymmetric loss function)
 exp𝐸𝐸( �ln(𝑌𝑌)|𝑋𝑋) ≤ 𝐸𝐸( �𝑌𝑌|𝑋𝑋) ,  a fact known as Jensen’s inequality

 If 1) the model is well specified and 2) errors are spherical, then an unbiased forecast is:

exp𝐸𝐸( �ln 𝑌𝑌 + ⁄𝑠𝑠2 2 |𝑋𝑋)
where 𝑠𝑠2 is 𝑉𝑉𝑉𝑉𝑉𝑉 ̂𝜖𝜖

 Remark 1: bias is often small 
 Remark 2: correction above may do more harm than good when either assumption is badly violated
 Remark 3: prediction intervals are correct under naïve transform, though they can be improved
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