
Regression analysis: a primer

Data to decisions



The universal mathematics of linear regressions

 Take two random variables 𝑋𝑋 and 𝑌𝑌 with finite variance

 Then it is always possible to write:

𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋 + 𝜀𝜀

where: 𝐸𝐸 𝜀𝜀 = 0 and 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋, 𝜀𝜀 = 0

 The model 𝑎𝑎 + 𝑏𝑏𝑋𝑋 is the best possible linear relationship between 𝑌𝑌 and 𝑋𝑋 in 
the sense that 𝐶𝐶𝑉𝑉𝑉𝑉(𝜀𝜀) is the lowest it can possibly be



R-squared (“goodness of fit”)

 Since 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋, 𝜀𝜀 = 0, 
𝐶𝐶𝑉𝑉𝑉𝑉 𝑌𝑌 = 𝑏𝑏2𝐶𝐶𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝐶𝐶𝑉𝑉𝑉𝑉(𝜀𝜀)

 Total Variance = Variance explained by the model + Residual Variance

 Then, 

𝑉𝑉2 =
𝑏𝑏2𝐶𝐶𝑉𝑉𝑉𝑉 𝑋𝑋
𝐶𝐶𝑉𝑉𝑉𝑉(𝑌𝑌)

tells us what fraction of the variance of 𝑌𝑌 is “explained” by the model



Regressions in statistics

 Assume we get a sample 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 of joints observations of/draws from  𝑋𝑋 and 𝑌𝑌 for 𝑖𝑖 =
1,2, …𝑛𝑛

 We can plot the resulting data with 𝑌𝑌 on the vertical axis and fit the best possible line 
through these dots

 This gives us estimates �𝑎𝑎 and �𝑏𝑏 of 𝑎𝑎 and 𝑏𝑏

 Furthermore, by the law of large numbers, �𝑎𝑎 → 𝑎𝑎 and �𝑏𝑏 → 𝑏𝑏 as 𝑛𝑛 gets large

 So now if you give me any particular 𝑋𝑋 I can forecast 𝑌𝑌 as �𝑎𝑎 + �𝑏𝑏𝑋𝑋

 This is the best linear forecast I can make, at least in sample



Confidence and prediction intervals for linear forecasts

 How confident should I be in my forecast? 
 After all:

1. I am uncertain about 𝑎𝑎 and 𝑏𝑏
2. I don’t know what 𝜀𝜀 draw I am going to get

 The first issue affects my ability to know 𝐸𝐸(𝑌𝑌|𝑋𝑋)
 Confidence intervals reflect only that first source of uncertainty
 My ability to forecast the 𝑌𝑌 value of one specific new observation is also 

limited by the 𝜀𝜀 problem
 Prediction intervals reflect both sources of uncertainty
 They tend to be very, very large even in pretty good 𝑉𝑉2 situations 



Significance test

 𝐻𝐻𝐻: 𝑏𝑏 = 0

 Can 𝐻𝐻𝐻 be rejected?

 Under the assumption that 𝑌𝑌 is normally distributed, the standard error 𝜎𝜎 �𝑏𝑏 of �𝑏𝑏
can be computed…

 … and T =
�𝑏𝑏

𝜎𝜎 �𝑏𝑏
follows a t-distribution with 𝑛𝑛 − 2 degrees of freedom

 Basically and with enough data, reject 𝐻𝐻𝐻 if 𝑇𝑇 > 1.96 or 𝑇𝑇 < −1.96



Classical assumptions

 Classical regression based inference relies on three main assumptions:
1. The error terms are normally distributed
2. They are independent of 𝑋𝑋 (homoscedasticity)
3. They are independent from one another

 Errors that satisfy those assumptions are called spherical

 If they do then all the tests and confidence intervals we have developed so far 
are valid 



Diagnosis

 The obvious ways to detect issues are to
1. plot residuals and look at the shape of the distribution
2. plot residuals against 𝑋𝑋 and look for patterns

 There are formal tests that automate this



Broad remedies

 Play with the model specification (go from 𝑌𝑌 to  log𝑌𝑌 to deal with curvature 
issues…) 

 Look for missing variables
 Understand the pattern in error dependence and use GLS



Outliers 

 Sometimes your plots will show observations that are way off, that visibly 
stand alone

 There are tests that detect those
 Two possibilities: contaminated case or rare case 
 In case 1, drop or correct the observation, obviously, but make sure the same 

contamination does not pollute the rest of your data
 In case 2, you need to model rare case and typical case separately, maybe by 

mixing models
 Sometimes, (in value-at-risk management, say, or mortgage design) it’s all about 

rare cases



Multivariate case
 If we add more explanatory variables, nothing of importance changes

 Say, 𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏1𝑋𝑋 + 𝑏𝑏2𝑍𝑍 + 𝜀𝜀

 We can only improve fit by adding variables (but fit is not the goal, more on 
that in next chapter)

 Now we can test joint hypothesis, like 𝐻𝐻𝐻: 𝑏𝑏1 = 𝑏𝑏2, using what’s called an F-
test, which any stats package can perform for you

 And we can still test the individual significance of each coefficient using t-tests



Forecasting with log transforms

 When ln(𝑌𝑌) is the dependent variable, the error in logs is minimized
 Negative errors are more penalized than positive errors (asymmetric loss function)
 exp𝐸𝐸( �ln(𝑌𝑌)|𝑋𝑋) ≤ 𝐸𝐸( �𝑌𝑌|𝑋𝑋) ,  a fact known as Jensen’s inequality

 If 1) the model is well specified and 2) errors are spherical, then an unbiased forecast is:

exp𝐸𝐸( �ln 𝑌𝑌 + ⁄𝑠𝑠2 2 |𝑋𝑋)
where 𝑠𝑠2 is 𝐶𝐶𝑎𝑎𝑉𝑉 ̂𝜖𝜖

 Remark 1: bias is often small 
 Remark 2: correction above may do more harm than good when either assumption is badly violated
 Remark 3: prediction intervals are correct under naïve transform, though they can be improved
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