Regression analysis for categorical variables

Data to decisions

Discrete dependent variables

• In many cases, Y can only assume a finite number of values:

> {0,1}

> ...

> {Buy, Hold, Sell}

- You could still regress Y on X (you always can) but interpreting the results gets unwieldy
- It is easier to write a model which, given X, produces probabilities that Y will assume different values
- This matches the way we naturally think the data were generated

- Assume that people select Y as follows:
 - 1. Draw a *latent* random variable $Y^* = a + bX + \varepsilon$ where ε is a draw from a standard normal distribution
 - 2. Choose Y = 1 if $Y^* > 0$, Y = 0 otherwise
- Given a sample, a guess for *a*, *b* (the model's parameters) and observed X and Y, we can compute the likelihood of observing that particular sample
- The probit model chooses parameters to maximize that likelihood

- Assume we want to measure the relationship between promotion spending (S = 1 or S = 0) and the likelihood that a customer will sign up
- We could also do this for a continuous *S*, but easier when *S* is a *dummy variable*
- A possible model:
 - 1. $Y^* = a + bX + cS + \varepsilon$ where X are observed customer characteristics
 - 2. Sign-up (Y = 1) if $Y^* > 0$, Y = 0 otherwise

Treatment effect: matching approaches

- Model selection is even tougher than normal in discrete contexts
- Less parametric alternative: for a given target X find in existing data a set of observations with "similar" X
- Some were targeted (the *treatment group*) some were not (the *control group*)
- A natural estimate of the treatment effect given X is:

Fraction of (Y = 1) among treated

Fraction of (Y = 1) in the control group

• Key, strong assumption: random assignment to treatment

Overcoming selection problems: experiment

- Run promotion strategy on a sample from the target group, measure impact
- This gets costly, obviously

• Logistics regressions are similar to Probit except that ε is assumed to follow a *logistic distribution* rather than a normal distribution

Multivariate case

- What if Y = 0, 1, 2?
- Trivial extension of binary case
- Assume that people select Y as follows:
 - L Draw $Y_1^* = a_1 + b_1 X + \varepsilon_1$
 - 2. Draw $Y_2^* = a_2 + b_2 X + \varepsilon_2$
 - 3. Choose Y = 0 if both $Y_1^* < 0$ and $Y_2^* < 0$
 - 4. Otherwise choose the option with highest payoff
- More model choices to make:
 - How are the ε 's potentially correlated?
 - 2. What's their distribution?

Forecasting with a probit model: example

- Assume you are applying to grad school and want to know what your probability of admittance is given your undergraduate GPA and GRE score
- $Y = \{Admit, Don't admit\}, X = \{GPA, GRE\}$
- Run a probit of Y on X
- Use resulting model to plug in you scores and get a forecast and the associated confidence interval
- You could also use it to estimate the value of boosting your GRE scores (see HW)