
Prepayment and default

Fixed income



Prepayment

 Prepayment (calls) occur when the borrower pays back their 
debt early

 Triggered by:
1. End of business need
2. De-leveraging policy
3. A covenant
4. Refinancing gains:

𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



Make-whole, yield maintenance provisions

 Those compensate lenders for reinvestment risks and kill 
refi gains

 Very common on IG corporate bonds

 Less so on HY

 Even less so on mortgages, hence prepayment is a big deal 
for MBS



Default
 On defaultable bonds, expected payoffs depend on the 

likelihood/probability of default (PD) and on the likely size of 
losses (loss severity rate or loss given default, aka LGD)

 Default probabilities usually measured as hazard rates

 ℎ𝑡𝑡= probability that the loan will default in period 𝑡𝑡
conditional on not having defaulted before

 Probability that the loan will default after exactly 𝑡𝑡 periods is:
1 − ℎ1 1 − ℎ2 … 1 − ℎ𝑡𝑡−1 ℎ𝑡𝑡

 We expect hazard rates to be humped-shaped with a jump at 
maturity



Expected loss (EL)
 By definition:
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× 𝑃𝑃𝑃𝑃(𝐿𝐿𝐿𝐿𝐷𝐷𝑡𝑡)

= 𝑃𝑃𝑃𝑃 × 𝐿𝐿𝐿𝐿𝐿𝐿

where 𝑃𝑃𝑃𝑃 = ∑𝑡𝑡=1𝑇𝑇 𝑃𝑃𝐷𝐷𝑡𝑡 so that 𝑃𝑃𝐷𝐷𝑡𝑡
𝑃𝑃𝑃𝑃

is a bona fide conditional distribution…

…. while LGD = ∑𝑡𝑡=1𝑇𝑇 𝑃𝑃𝐷𝐷𝑡𝑡
𝑃𝑃𝑃𝑃

× 𝑃𝑃𝑃𝑃(𝐿𝐿𝐿𝐿𝐷𝐷𝑡𝑡) is the expected value of LGD as of 
today conditional on default happening during the holding period



Spreads compensate for EL

 Assuming default is the only risk, one gets, for a zero,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸 𝑟𝑟 +
𝐸𝐸𝐸𝐸
𝑃𝑃
− 𝑟𝑟𝐹𝐹

 Let’s do that math, courtesy of Ivan Shaliastovich



Implied default probabilities (1)
 More generally, spreads, given LGDs, imply default rates 

and vice-versa

 Example: Consider a defaultable bond with face value 
1,000 that trades for 1,025. The SA bond has a yearly 
coupon rate of 5% and a remaining maturity of exactly 
two years. Spot rates are 1, 1.5, 2, 2.5 over the next six-
month. Assume constant hazard rates and a constant 
recovery rate of 60%.  (LGD are measured with respect 
to projected risk-free value at forward rates.) What is the 
6-month rate of hazard into default for this bond?



Default probabilities implied by CDS 
spreads (1)

 Assume constant hazard rates 𝜆𝜆, constant recovery rate 
𝑅𝑅, and flat CDS spreads 𝜅𝜅

 Then CDS spreads κ should solve:

𝜆𝜆 =
𝜅𝜅

1 − 𝑅𝑅

 Further, letting 𝑃𝑃(0, 𝑡𝑡) be probability of default between 
now and time 𝑡𝑡:

𝑃𝑃 0, 𝑡𝑡 = �
0

𝑡𝑡
1 − 𝑃𝑃 0, 𝑠𝑠 𝜆𝜆𝜆𝜆𝜆𝜆



Default probabilities implied by CDS 
spreads (2)

 It follows that 𝑑𝑑𝑑𝑑(0,𝑡𝑡)
𝑑𝑑𝑑𝑑

= 1 − 𝑃𝑃 0, 𝑡𝑡 𝜆𝜆

 This is a first-order differential equation whose solution, 
given 𝑃𝑃 0,0 = 0 is:

𝑃𝑃 0, 𝑡𝑡 = 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆

 So, finally,

𝑃𝑃 0, 𝑡𝑡 = 1 − 𝑒𝑒−
𝜅𝜅𝑡𝑡
1−𝑅𝑅



Default probabilities implied by CDS 
spreads (3)

 If there is only one payment (one maturity) we can just 
do

𝑃𝑃 0,𝑇𝑇 =
𝜅𝜅

1 − 𝑅𝑅

 That’s the CFA default



Prepayment vectors

 Assume that prepayment rates are a random variable that lives 
on the same tree as interest rates (!) 

 Example 1: deterministic CPR (PSA, say, or constant)
 Example 2: (Bjorn Eraker): 

𝑥𝑥𝑡𝑡 = 𝑥𝑥 + 𝑘𝑘 𝑟𝑟𝑡𝑡 − Θ min
𝑡𝑡
𝑇𝑇

, 1

 What about factors other than interest rates? 
 Typical assumption is that these other factors are orthogonal 

to (independent of) interest rates hence need not be modeled 
on pathwise basis 

 Standard practice is to level-shift interest rate dependent 
model as a function of characteristics at origination



Merton’s distance to default model

 Merton models equity as a call option on the firm’s assets (which it is given 
limited liability)

 Then (under strong assumptions) one shows “distance to default” to be

𝐷𝐷𝐷𝐷 =
ln 𝑉𝑉

𝐷𝐷 + 𝑟𝑟 − 𝜎𝜎2
2 × 𝑇𝑇

𝜎𝜎 × √𝑇𝑇

where 𝑉𝑉 is asset value, 𝜎𝜎 its volatility, 𝑇𝑇 is debt maturity, 𝑟𝑟 is the short-term 
interest rate

 Under even stronger assumptions, the probability of default is 𝑁𝑁(−𝐷𝐷𝐷𝐷)



Default vectors

 Assume that default rates are a random variable that lives 
on the same tree as interest rates (!) 

 Example 1: deterministic CDR (SDA, say, or flat) 
 What about factors other than interest rates? 
 Again, typically treated as level shift

Putting it all together we get a I/P/D tree that is ready to 
price anything, in principle…
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