Spreads galore

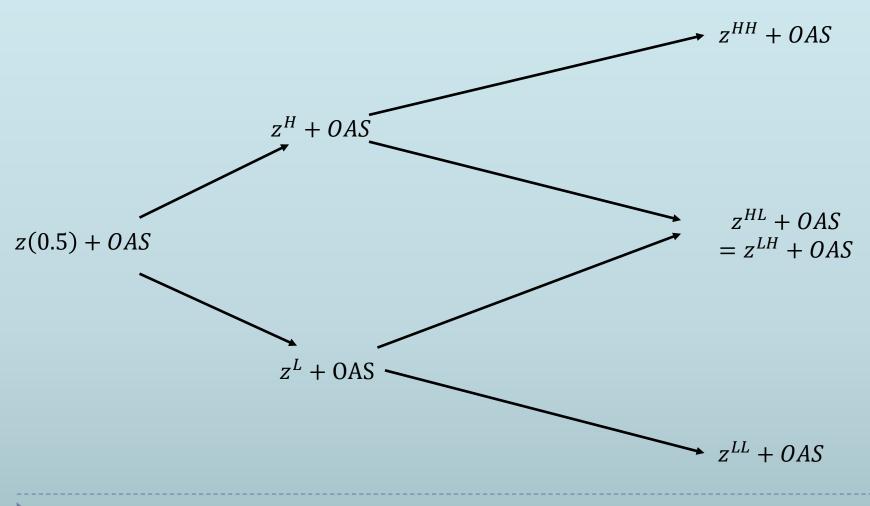
Fixed income

- Compute a bond's YTM, or its IRR under a specific prepayment/default scenario
- Report vs treasury rate at similar maturity

Same vs swap rate at similar maturity

Asset swap (ASW) Spread

- Buy fixed rate bond plus enter into fixed for LIBOR swap leaving you with:
 - 1. Pay coupon
 - 2. Receive LIBOR (or SOFR) + spread
- Par-par ASW contracts also trade distance to par for fixed add-on to spread
- ASW spread should be very near I-spread and very near Z-spread, especially for bonds that trade near par
- In the event of default, breakage fee is computed


S-spread

 Same as Z-spread except STRIP rates are used instead of spot rates

OAS

- If our IR/P/D model were correct, simulated price ought to equal market price
- It never does, expect for treasuries (why?)
- Most instruments price at a spread over model
- Question: what constant shift of the interest rate model yields the correct price?
- The answer is called the Option-Adjusted-Spread or OAS
- It's a terrible name
- The OAS should be called the measure of our ignorance
- It is nothing but model error, it is certainly not a premium for optionality risk
- Either we work under RNP, or we don't
- Risk-premia are a meaningless notion under RNP
- A useful measure but people in the field and in the industry are totally clueless as to what it really is
- Sad
- <end of rant>

OAS is a level shift in the tree

Fixed-income attribution

- A fixed income portfolio yields a certain return over a certain time period, in excess of some benchmark
- What accounts for that excess return?
- Key question and, unfortunately, no universal way of doing this, it varies a lot from shop to shop

Brick-by-brick

- Consider an investment universe made of sectors i = 1, 2, ... n
- Denote by $\overline{\alpha}_i$ and \overline{r}_i the weights and returns from each sectors while α_i and r_i are the same from your portfolio
- Portfolio return is $r = \sum_{i}^{n} \alpha_{i} r_{i}$ while the benchmark return is $\bar{r} = \sum_{i}^{n} \bar{\alpha}_{i} \bar{r}_{i}$
- It follows that $r \overline{r}$ is the sum of three terms:

$$\sum_{i=1}^{n} \overline{\alpha}_{i}(r_{i} - \overline{r}_{i})$$

$$+ \sum_{\substack{i=1\\n}}^{n} (\alpha_{i} - \overline{\alpha}_{i})\overline{r}_{i}$$

$$+ \sum_{\substack{i=1\\n}}^{n} (\alpha_{i} - \overline{\alpha}_{i})(r_{i} - \overline{r}_{i})$$

Brick-by-brick

- Consider an investment universe made of sectors i = 1, 2, ... n
- Denote by $\overline{\alpha}_i$ and \overline{r}_i the weights and returns from each sectors while α_i and r_i are the same from your portfolio
- Portfolio return is $r = \sum_{i=1}^{n} \alpha_{i} r_{i}$ while the benchmark return is $\bar{r} = \sum_{i=1}^{n} \bar{\alpha}_{i} \bar{r}_{i}$
- It follows that $r \overline{r}$ is the sum of three terms:

$$\sum_{i=1}^{n} \overline{\alpha}_{i}(r_{i} - \overline{r}_{i}) \qquad \text{(selection)}$$

$$+ \sum_{\substack{i=1\\n}}^{n} (\alpha_{i} - \overline{\alpha}_{i})\overline{r}_{i} \qquad \text{(allocation)}$$

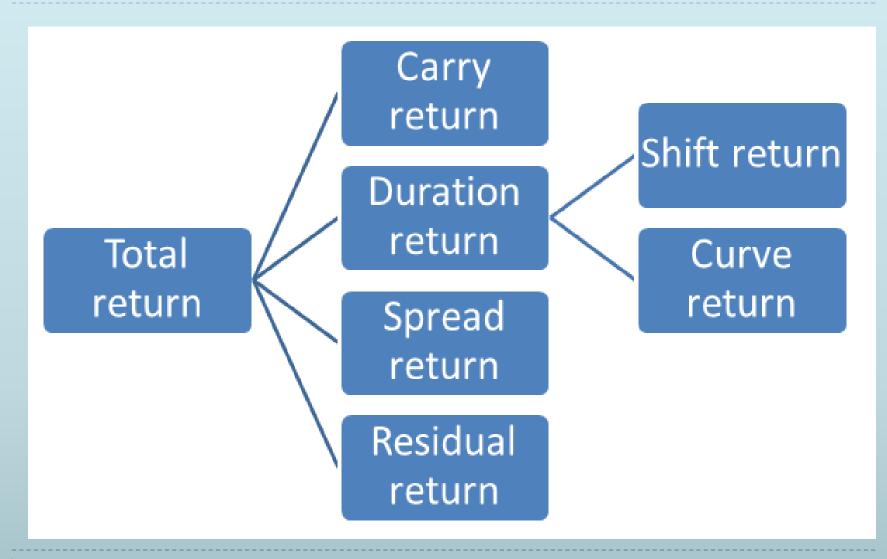
$$+ \sum_{\substack{i=1\\i=1}}^{n} (\alpha_{i} - \overline{\alpha}_{i})(r_{i} - \overline{r}_{i}) \qquad \text{(interaction)}$$

Insufficient for fixed income

- My return in fixed income is affected by, inter alia,
 - L. Carry
 - 2. Price changes caused by term structure (roll down)
 - 3. Price changes caused by yield curve movements (duration)
 - Price changes caused by changes in the yield curve shape (convexity)
 - 5. Price change caused by spread changes
 - 6. Plus standard allocation and selection
- We need to break that all down

Breaking it down (1)

Most fundamentally:


$$Total \ return = \frac{Income}{P} + \frac{\Delta P}{P}$$

- So the first thing any attribution should do is remove the first piece, a.k.a *carry*
- Carry is positive for long portfolios (ex sovereign?), but may be negative for any portfolio involving short position

Breaking it down (2)

- The second piece $\frac{\Delta P}{P}$, we've seen before
- One common component of this are movements in the yield curve: shifts, twists, and butterflies
- So step 2 is to remove the effect of that on all portfolio components
- What is left of $\frac{\Delta P}{P}$ must come from spread, either average spreads over treasury or security-specific spread compression or widening

Campisi/Duration attribution

Example

CORP

ΗY

26.17%

0.00%

Portfolio	Index	Difference	Shift	Twist	Allocation	Selection
2.23%	2.07%	0.16%	-0.05%	0.05%	-0.12%	0.28%
2.25 /0	2.07 /0	0.10 /0	0.05 /0			
				GOV:	0.01%	0.00%
				MBS:	0.00%	0.02%
				CORP:	0.01%	0.16%
				HY:	-0.13%	0.11%
Portfolio	Weight	Duration	Total Return	Shift Return	Twist Return	Excess Return
	100.00%	3.90	2.23%	2.00%	-0.28%	0.50%
GOV	20.00%	5.05	2.37%	2.59%	-0.50%	0.27%
MBS	40.00%	1.60	1.04%	0.82%	-0.07%	0.30%
CORP	30.00%	6.02	3.64%	3.09%	-0.47%	1.03%
HY	10.00%	4.45	2.46%	2.28%	-0.05%	0.22%
Index	Weight	Duration	Total Return	Shift Return	Twist Return	Excess Return
	100.00%	4.00	2.07%	2.05%	-0.32%	0.34%
GOV	38.25%	5.12	2.41%	2.63%	-0.51%	0.30%
MBS	35.58%	1.63	1.04%	0.84%	-0.04%	0.25%

2.87%

2.41%

-0.43%

-0.09%

0.51%

-0.92%

Cut and pasted from http://www.frongello.com/support/works/fixedincomesydney.pdf

2.95%

1.40%

5.60

4.70