
Time series analysis

Data to decisions



Definition

 A time series is a sequence … ,𝑋𝑋𝑡𝑡 ,𝑋𝑋𝑡𝑡+1,𝑋𝑋𝑡𝑡+2,𝑋𝑋𝑡𝑡+3, … of random variables
 For instance 𝑋𝑋 may be GDP, sales, EBITDA, … while 𝑡𝑡 denotes quarters or 

years
 The goal of time series analysis is to use data to find and exploit patterns in 

the series:
1. Does the series have a trend?
2. Does it display seasonality?
3. Does it revert to some long-term mean?
4. Does it display persistence?
5. …



Classical decomposition

 It is useful to think of a time-series as consisting of three parts:

𝑋𝑋𝑡𝑡 = 𝑇𝑇𝑡𝑡 + 𝑆𝑆𝑡𝑡 + 𝑌𝑌𝑡𝑡

where
1. 𝑇𝑇𝑡𝑡 is the trend (a simple, slow-moving, predictable function of time)
2. 𝑆𝑆𝑡𝑡 is a seasonality component (a component with known periodicity)
3. 𝑌𝑌𝑡𝑡 is a stationary component (a component with no independent time effect)

 Classical approach to time-series: 1) remove 𝑇𝑇 and 𝑆𝑆, 2) model 𝑌𝑌



Stationarity

 A series is stationary if for 𝑘𝑘 = 1,2, … the distribution of 𝑌𝑌𝑡𝑡+𝑘𝑘 given 𝑌𝑌𝑡𝑡 does 
not depend on 𝑡𝑡

 Deep theorems tell us that all such series can be well approximated by:

𝑌𝑌𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝑌𝑌𝑡𝑡−1 + 𝛽𝛽2𝑌𝑌𝑡𝑡−2 + ⋯𝛽𝛽𝑘𝑘𝑌𝑌𝑡𝑡−𝑘𝑘
+ 𝜀𝜀𝑡𝑡+𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜃𝜃2𝜀𝜀𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑝𝑝𝜀𝜀𝑡𝑡−𝑝𝑝

where the top-line is the autoregressive part and the bottom part is the moving 
average part



Removing the seasonal component

 Two steps: 
1. Look/test for calendar effect (Christmas, Monday, leap year…)
2. Remove them

 In practice, this is grunt, mechanical work and statistical packages are there for 
you 

 For an example, see the X12 package at the Census Bureau



Modeling stationary series

 Once we are reasonably confident that we are left with a stationary series 
(there are tests for that, though they are weak), “all” we need to do is choose 
the length of the AR part and the MA part

 This is a model selection issue so the standard tools apply:
1. Information criteria
2. Cross-validation



AR(1) processes
 The simplest model we can write for a persistent time series is:

𝑌𝑌𝑡𝑡 = 𝑎𝑎 + 𝜌𝜌𝑌𝑌𝑡𝑡−1 + 𝜀𝜀𝑡𝑡

where 0 < 𝜌𝜌 < 1 and  𝜀𝜀𝑡𝑡~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑁𝑁(0,𝜎𝜎2) is white noise i.e. independent of everything

 If we can estimate 𝑎𝑎 and 𝜌𝜌 then an obvious and optimal way to forecast future 𝑌𝑌′𝑠𝑠 given our 
last data point 𝑌𝑌𝑡𝑡 is:
1. �𝑌𝑌𝑡𝑡+1 = 𝑎𝑎 + 𝜌𝜌𝑌𝑌𝑡𝑡
2. �𝑌𝑌𝑡𝑡+2 = 𝑎𝑎 + 𝜌𝜌 �𝑌𝑌𝑡𝑡+1 = 𝑎𝑎 + 𝜌𝜌𝑎𝑎 + 𝜌𝜌2𝑌𝑌𝑡𝑡
3. …
4. �𝑌𝑌𝑡𝑡+𝑘𝑘 = 𝑎𝑎 + 𝜌𝜌𝑎𝑎 + ⋯𝜌𝜌𝑘𝑘𝑎𝑎 + 𝜌𝜌𝑘𝑘𝑌𝑌𝑡𝑡
5. …
6. �𝑌𝑌∞ = 𝑎𝑎

1−𝜌𝜌



Confidence intervals for AR(1) forecasts

 If we can estimate 𝜎𝜎 then the standard error of our 𝑡𝑡 + 𝑘𝑘 forecast is:

�𝜎𝜎𝑡𝑡+𝑘𝑘 = 1−𝜌𝜌 2𝑘𝑘 𝜎𝜎
1−𝜌𝜌2

 A 95% confidence interval for our 𝑡𝑡 + 𝑘𝑘 forecast is:

�𝑌𝑌𝑡𝑡+𝑘𝑘 − 1.96 �𝜎𝜎𝑡𝑡+𝑘𝑘 , �𝑌𝑌𝑡𝑡+𝑘𝑘 + 1.96 �𝜎𝜎𝑡𝑡+𝑘𝑘



But enough chit-chat, it’s time to looks at some examples  
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