
Financial Engineering and the Macroeconomy∗

Pedro S. Amaral
California State University Fullerton

Dean Corbae
University of Wisconsin – Madison

Erwan Quintin†

University of Wisconsin – Madison

April 18, 2018

Abstract

The volume of financial engineering has grown markedly across the world over the
past few decades, for at least two reasons. On the supply side, technological imporve-
ment and regulation arbitrage have made complex security creation more cost effective.
On the demand side, appetite for safe assets has increased. We describe a dynamic
model of security creation where the macroeconomic impact of those changes can be
characterized and quantified. We find that those shocks can cause large increases in
costly security creation volumes. But the resulting impact on output, capital forma-
tion and TFP is generally small, and may well be negative. While financial engineering
serves a fundamental and socially valuable role in our model, the impact of financial
engineering booms on macroeconomic aggregates is limited.
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1 Introduction

The volume of financial engineering – by which we mean the transformation of cash-flows

to create securities that cater to the needs of heterogenous investors – has grown markedly

across the world over the past few decades. In the United States, the cash-flows created

by the real estate sector as well as corporate assets and liabilities such as receivables and

business loans are now routinely pooled and tranched into securities with different risk and

liquidity characteristics. Figure 1 illustrates the growing importance of financial engineering

by plotting the outstanding volume of Asset-Backed Securities (ABS), excluding housing-

related securities. It also shows that within this asset class, Collateralized Loan Obligations

(CLOs) – which are securities backed by business loans – have grown from virtually non-

existent in the mid-1990’s to over half a trillion dollars in 2017.1

At least two concurrent phenomena have fueled the rise of financial engineering activities.

First, technological improvements and regulatory arbitrage have made the activity cheaper.2

Second, demand for the securities created via financial engineering – appetite for highly

rated assets, in particular – has increased.3 In this paper, we lay out an environment in which

supply and demand shocks cause changes in the volume of costly security creation and use the

resulting model to take on a simple question: What should we expect the impact of financial

engineering booms to be on macroeconomic aggregates such as GDP, capital formation, and

total factor productivity (TFP)?

Our model is a dynamic extension of Allen and Gale (1988)’s optimal security design

model in which the production side of the economy aggregates up to a standard neoclassical

model with aggregate uncertainty. The economy contains investors (households) who are

1Although only shorter data is available for the Asset-Backed Commercial Paper (ABCP) market, we know
that its volume doubled to reach over 1.2 trillion dollars between 2000 and 2007. That market collapsed in
2008 and has yet to recover. Figure 1 shows that the CLO market was much less affected by the crisis and
has doubled in size since then.

2See Allen and Gale (1994), for an early review of factors behind the boom in financial innovation over
the past few decades.

3See Bernanke (2011). As they put it, “Given the strength of demand for safe U.S. assets, it would have
been surprising had there not been a corresponding increase in their supply.”
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Figure 1: US Asset-Backed Securities Outstanding (USD Billions)
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Source: Securities Industry and Financial Markets Association (SIFMA). These volume num-
bers include all collateral sources except housing-related collateral.

risk-neutral as well as investors who are highly risk-averse and have a high willingness to pay

for safe securities. Absent transaction costs, it would be optimal for producers to sell the safe

part of the stochastic cash-flows they generate to risk-averse agents and the residual claims

to risk-neutral agents. But splitting cash-flows in this fashion is costly. Given this cost,

producers choose which securities to create taking their market value – i.e the willingness

by households to pay for these securities – as given. Given the resulting security menu at

each possible history, households choose a consumption policy which in turn, pins down their

willingness to pay for securities. In equilibrium, the resulting pricing kernel has to coincide

with the kernel assumed by producers. Allen and Gale (1988) show that this fixed point
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problem always has a solution in their static environment. We show that the same holds in

our dynamic extension.

We go on to fully characterize optimal security creation policies. First, it only makes sense

to sell risk-free securities to risk-averse households, and producers who do choose to issue safe

assets always issue as much of it as they can. Second, producers either retain (consume,

literally speaking, in our model) residual cash-flows or sell them to risk-neutral households

when the value of doing so exceeds the security creation cost. In our model as in recent US

data therefore, security creation activities result in the production of safe securities backed by

risky assets. Not surprisingly then, we find that lowering security creation costs or increasing

the fraction of risk-averse agents result in an increase in costly security creation activities

and, in particular, increased issuances of safe securities.

The production side of model economy aggregates up to a standard neoclassical production

function where conventionally-measured TFP is the average productivity of active producers.

When security creation costs fall, some producers find it profitable to operate when they did

not before which, in general equilibrium, puts upward pressure on wages. This in turn causes

some producers to exit and the net effect of these forces on aggregate TFP depends on the

relative productivity of entering and exiting producers. This immediately implies that the

connection between financial engineering booms and TFP is ambiguous, at best, which we

illustrate via calibrated numerical simulations of our model. We also find that while lowering

security creation costs has a large impact on the fraction of producers who engage in security

creation and the volume of securities so created, the resulting effect on output and capital

formation is small, at best. Producers who choose to engage in security creation after costs

fall are, for the most part, producers who would have been active anyway. When there is an

increase in producer participation following the change, it tends to be small.

Perhaps more surprisingly, the impact of lowering security creation costs on capital for-

mation and output can even be negative. In our model, spending of securities is allocated

to capital formation, producer rents, and security creation costs. While total spending on

securities always rises following decrease in the cost, so can the resources spent on security
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creation as more producers engage in it. Capital formation, hence GDP, can fall. We also

find that when average output and capital formation do rise as financial engineering activities

increase, TFP tends to fall. Put another way, when more financial engineering is associated

with more output, it is also associated with lower TFP. This is because the increase in capital

formation increases the participation of marginal producers, and those producers drag average

TFP down.

Increases in financial engineering caused by an increase in the fraction of risk-averse agents

also have small macroeconomic impacts. Furthermore, these demand-driven booms in finan-

cial engineering are even more likely to have a negative impact on output. In our first,

supply-side experiment, when costs fall and more engineering takes place, the smaller cost

per producer offsets the fact that more producers choose to bear the security creation cost.

When the shock comes from the demand side, that offsetting effect is no longer active and

financial engineering booms must imply that more resources are spent on security creation.

The two comparative statics experiments make very different predictions when it comes

to security prices. The decrease in security creation costs cause the risk-free rate to go up

while a higher appetite for risk-free assets by investors cause the risk-free rate to fall. Given

the steady fall in safe yields observed in the past two decades, these intuitive findings confirm

the view championed for instance by Bernanke (2011) that the recent rise in securitization in

the United States has been largely demand-driven. Our model predicts that given this, one

should not expect this rise to have contributed large increases in output, if any.

Gennaioli, Shleifer, and Vishny (2013) present a model where more demand for safe assets

results in more securitization, more investment and more output when investors have rational

expectations. In their model, security creation is free so that expanding financial engineering

has no impact on resource use. Their main point, however, is that when investors fail to

take into account small probability events (a behavior they term neglected risk, and a viola-

tion of rational expectations), the impact of financial engineering booms on output becomes

ambiguous. They do lead to more investment and more output during expansions but, on

the other hand, results in greater leverage by financial intermediaries which makes recessions
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more severe. We find that even when investors have rational expectations, booms in financial

engineering are unlikely to be associated with large output gains.

Our paper is also related to the recent empirical literature that argue that the effect of

financial development on growth and productivity becomes weaker, if not negative, at high

levels of financial development.4 Arcand, Berkes, and Panizza (2015), for instance, make

the empirical case that once private credit reaches 100% of GDP, additional increases in pri-

vate intermediation have a negative impact on growth. The standard explanation for this

tapering proposed in those papers is that once the allocative benefits of better credit mar-

kets are exhausted, the nature of financial activity expansion changes. Whereas at early

stages of development credit expansion leads to the funding of new and highly productive

projects, eventually financial development emphasizes security engineering activities. Based

for instance on the aforementioned paper by Gennaioli, Shleifer, and Vishny (2013), or classi-

cal arguments formalized by, e.g., Tobin (1984) that large financial sectors inefficiently draw

skilled human capital away from the production sector,5 they argue that too much finance

may be detrimental to growth.

While they are consistent with a weak correlation between financial engineering activities

and output at high level of development, the inference one should draw from our findings is

quite different. Financial engineering serves a clear, beneficial social role in our framework.

When the fraction of risk-averse agents increases, the economy optimally responds by creating

more safe assets, even though this is a costly activity. A social planner who must bear the

same security creation costs as our producers would respond in the same fashion. As in Allen

and Gale (1988) (or in Gennaioli, Shleifer, and Vishny (2013), when investors have rational

expectations) our equilibria are constrained-efficient. The points we make in this paper are

strictly positive: there is no reason to expect a large positive impact of financial engineering

booms on macroeconomic aggregates.

4See Sahay, Cihak, N’Diaye, Barajas, Pena, Bi, Gao, Kyobe, Nguyen, Saborowski, Svirydzenka, and Yousefi
(2015) for a recent review of the empirical literature.

5Philippon and Reshef (2013) make the case that skilled workers in Finance earn excessive rents.
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2 The environment

Consider an economy in which time is discrete. Each period, a mass one of two-period lived

households is born. Each household is endowed with a unit of labor which they deliver

inelastically in the first period of their life for a competitively determined wage. There are

two types of households – type A and type N – that differ in terms of how they value

consumption plans, as we will explain below. Denote the fraction of type N households by

θN while θA = 1− θN is the fraction of type A households born each period.

The economy also contains a large mass of two-period lived producers born at each date t.

In the first period of their life, each producer can choose to operate a project whose activation

requires an investment of one unit of the consumption good at the start of any period. An

active project operated by a producer of skill zt > 0 yields gross output

z1−α
t nαt

at the end of period t, where α ∈ (0, 1) and nt is the quantity of labor employed by the

project.

The skill level, zt, of a particular producer is subject to aggregate uncertainty. Producers

must decide whether to activate their project before knowing whether aggregate conditions

η ∈ {B,G} are good (G) or bad (B). The aggregate shock follows a first-order Markov process

with known transition function T : {B,G} → {B,G}. Producer types, therefore, are a pair,

z = (zB, zG) ∈ IR2
+ of skill levels. A producer of type (zB, zG) is of productivity zB during

bad times and zG during good times. The mass of producers in a given Borel set Z ⊂ IR2
+ is

µ(Z) in each period. We assume that µ has continuous derivatives6 and that producer types

are public information.

Producers have linear preferences and can either consume at the beginning of the first

period of their life or or at the beginning of the second period, although they heavily dis-

6This is for simplicity only. The case where µ features positive mass points can be handled by introducing
lotteries, as in Halket (2014).
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count late consumption. Specifically, a consumption profile for producers alive at date t is a

triplet
(
cP1,t, c

P
2,t(B), cP2,t(G)

)
where cP1,t is their consumption at the start of the first period of

their life while (cP2,t(B), cP2,t(G)) is their second-period consumption which may depend on the

realization of the aggregate shock. They rank those consumption profiles according to:

cP1,t + εE
(
cP2,t(η)|ηt−1

)
,

where ε is a small but positive number.

After the aggregate shock is realized, conditional on having activated a project, and taking

the wage rate, wt, as given, a producer of talent z chooses her labor input by solving

Π(wt; z) ≡ max
n>0

z1−αnα − nwt,

where Π denotes net operating income. Let

n∗(wt; z) ≡ arg max
n>0

z1−αnα − nwt

denote the profit-maximizing labor used, given values of the aggregate shock and the wage.

We note, for future reference, that n∗ is linear in the realized level z of skill.

Active producers finance the investment of capital they need by selling securities, i.e.

claims to their end-of-period output, to households. Selling one security is free, but selling

two different types of securities carries a fixed cost ζ > 0. One interpretation of this cost

is that the agent types are physically separated from one another. Producers must decide

whether to locate near one type or near the other. Delivering payoffs to the closer type is free

– this is a mere normalization– delivering payoffs to the more distant type is more costly.

As in Allen and Gale (1988), producers are small hence, when considering which securities

to issue, they take as given households’ willingness to pay for marginal investments in the

associated payoffs. Formally, let qN,t(xB, xG) be the price at which a marginal amount of a

security with payoffs (xB, xG) ≥ (0, 0) at date t can be sold to type N households, where
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payoffs may depend on aggregate conditions. Similarly, let qA,t be the price at which contin-

gent securities can be sold to type A households. Active producers of type (zB, zG) choose

non-negative security payoffs and consumption profiles to maximize:

qA,t (xA,t(B), xA,t(G)) + qN,t (xN,t(B), xN,t(G))− 1− ζ1{xA,t 6=0,xN,t 6=0} + εE
(
cP2,t(η)|ηt−1

)
subject to:

xA,t(B) + xN,t(B) + cP2,t(B) ≤ Π(wt(B); zB),

xA,t(G) + xN,t(G) + cP2,t(G) ≤ Π(wt(G); zG),

qA,t (xA,t(B), xA,t(G)) + qN,t (xN,t(B), xN,t(G)) ≥ 1 + ζ1{xA,t>0,xN,t>0},

where the indicator 1{xA,t>0,xN,t)>0} takes value one when a non-zero payoff is sold to each

household type. The last condition simply says that proceeds from selling securities must

cover funding needs at the start of the period. Clearly, producers become active when that

constraint can be met since in that case (and only in that case) they enjoy non-negative

consumption.

Securities, therefore, are mappings from the aggregate state to a non-negative dividend.

Allowing negative dividends would be formally similar to allowing households to short-sell

securities. As is well known, doing so can lead to non-existence, even in one-period versions

of the environment we describe. More importantly perhaps, financial engineering could not

generate private profits if short-sales were unlimited, since any value created by splitting

cash-flows could be arbitraged away in the traditional Modigliani-Miller sense.7 As a result,

no costly security creation would take place in equilibrium.

Households take as given the set of securities available at the start of a particular period.

7See Allen and Gale (1988) for the formal version of this argument.
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From their point of view, the menu of securities is a set of gross returns

Ri,t(z, η) =
xi,t(η)

qi,t(xi,t(B), xi,t(G))

on the security issued by producers of type z = (zB, zG) ∈ IR2
+ for household type i ∈ {A,N)

with the convention that Ri,t(z) = 0 if type z is inactive.

Consider a household of type N born at date t. They earn wage wt when young. They

consume a part cNy,t of those earnings and enter the second period of their life with wealth

wt − cNy,t. They allocate that wealth to the securities available at that time by choosing a

quantity aNt (z) ≥ 0 to invest in the securities produced by each producer type z. At the end

of the second period of their life, they consume the proceeds
∫
aN(z)RN,t(z, η)dµ where η is

the realization of the aggregate shock. Formally, given wt, type N households born at date t

solve:

max
aNt (z),cNy,t,c

N
o,t≥0

log(cNy,t) + β log

{
E
(
cNo,t+1(η)|ηt

)}
subject to:

wt =

∫
at(z)dµ+ cNy,t−1,

cNo,t(B) =

∫
aNt (z)RN,t(z, B)dµ,

cNo,t(G) =

∫
aNt (z)RN,t(z,G)dµ,

where β > 0.

Given these preferences, type N households consume a fixed fraction of their earnings in

the first period of their life. Once they become old, they have risk-neutral preferences over

remaining consumption plans. As a result, old type N agents invest all their wealth in those

securities whose expected return is highest. Therefore, letting

R̄N,t = max
z
T (B|ηt−1)RN,t(z, B) + T (G|ηt−1)RN,t(z,G),
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old risk-neutral agents are willing to pay:

qN,t(x(B), x(G)) =
T (B|ηt−1)x(B) + T (G|ηt−1)x(G)

R̄N,t

for a marginal investment in a security with payoff (x(B), x(G)) at date t.

Similarly, type A agents born at date t solve

max
aAt (z),cAy,t,c

A
o,t≥0

log(cAy,t) + β log

{
min

{
cAo,t+1(B), cAo,t+1(G)

}}

subject to:

wt =

∫
at(z)dµ+ cAy,t−1,

cAo,t(B) =

∫
aAt (z)RA,t(z,B)dµ,

cAo,t(G) =

∫
aAt (z)RA,t(z,G)dµ.

Old agents of type A, in other words, are infinitely risk-averse and try to maximize the value

of worst-case scenario consumption. Their preferences are also such that they save a fixed

fraction of their earnings when young.

Consider an old household of type A alive at date t. Define

R̄A,t =
min

{
cAo,t(B), cAo,t(G)

}
aA,t

as the effective return these agents realize on their investment at the optimal solution to their

problem. If cAo,t(B) < cAo,t(G) at the optimal solution, their willingness to pay for a marginal

investment in a security with payoffs (x(B), x(G)) is

qA,t(x(B), x(G)) =
x(B)

R̄A,t

.
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Indeed, they only value marginal payoffs in the lowest consumption state in that case. The

symmetric property must hold when cAo,t(B) > cAo,t(G). When cAo,t(B) = cAo,t(G), which we will

soon argue must hold in equilibrium at all dates,

qA,t(x(B), x(G)) =
min(x(B), x(G))

R̄A,t

.

Having stated every agent’s optimization problem, we can now define an equilibrium. Old

households of type i ∈ {A,N} enter date 0 with wealth ai,0 > 0. The aggregate state of the

economy at date 0 is fully described by Θ0 = {aA,0, aN,0, η−1} where η−1 ∈ {B,G} is the ag-

gregate shock at date t = −1. An equilibrium, then, is a list of security payoffs {xi,t(z, η)} for

each household type, producer type and aggregate shock, the associated returns {Ri,t(z, η)},

consumption profiles
(
cP1,t, c

P
2,t(B), cP2,t(G)

)
for each producer type and a corresponding set Zt

of active producers, wage rates {wt(η)} for each η ∈ {B,G}, consumption plans and security

purchases {ciy,t, cio,t, ai,t(z)} for each household type and, finally, pricing kernels {qA,t, qN,t}

such that, at all dates and for all possible histories of aggregate shocks:

1. Security purchases and consumption plans solve the household’s problem;

2. Security menus and consumption plans solve each producer’s problem;

3. The market for labor clears:

∫
n∗(wt(η); z)dµ = 1 for η ∈ {B,G};

4. The market for each security type clears:

∫
θiai,t(z)Ri,t(z, η)dµ =

∫
xi,t(η)dµ

for i ∈ {A,N} and η ∈ {B,G};
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5. Pricing kernels are consistent with the household’s willingness to pay for marginal pay-

offs, i.e.:

(a) qN,t(x(B), x(G)) = T (B|ηt−1)x(B)+T (G|ηt−1)x(G)

R̄N,t
,

(b) qA,t(x(B), x(G)) = min(x(B),x(G))

R̄A,t
if cAo,t(B) = cAo,t(G),

(c) qA,t(x(B), x(G)) = x(G)

R̄A,t
if cAo,t(B) > cAo,t(G),

(d) qA,t(x(B), x(G)) = x(B)

R̄A,t
if cAo,t(B) < cAo,t(G),

for all possible securities (x(B), x(G)) ≥ (0, 0) where:

R̄N,t = max
z
T (B|ηt−1)RN,t(z,B) + T (G|ηt−1)RN,t(z,G),

while

R̄A,t =
min{cAo,t(B), cAo,t(G)}

aA,t
.

The final equilibrium condition is similar to the consistency condition imposed by Allen

and Gale (1988). Because type A households have Leontieff preferences, we cannot simply

write as they do that pricing kernels are marginal rates of substitutions but the economic

content of the condition is exactly the same. Producers take pricing kernels as given and

choose securities to mazimize their profits. Consumers, given this menu of securities, choose

an optimal consumption plan which implies their marginal willingness to pay of securities.

The implied kernels have to coincide with the kernels assumed by producers.

3 Properties of equilibria

The state of the economy at the start of a period is fully described by the wealth of old

households ai,t > 0 for i ∈ {A,N} and and the most recent aggregate shock ηt−1. For every

possible value of these three objects we need to find pricing kernels (qA,t, qN,t) as well as wages

rate (wt(B), wt(G)) for each possible realization of the aggregate such that all markets clear
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and the Allen-Gale condition (equilibrium condition 5) is satisfied. This is a static problem

which we characterize in this section. Since households simply save a fixed fraction of their

wages in each period, a simple law of motion will then fully describe an equilibrium.

3.1 Security space

The following result greatly simplifies the analysis.

Lemma 1. In any equilibrium, the consumption of risk-averse agents is risk-free and they

only purchase risk-free securities. Furthermore, in any equilibrium,

R̄N,t ≥ R̄A,t

with a strict inequality whenever ζ > 0 and a positive mass of producers issue two securities.

Proof. Assume, by way of contradiction, that an equilibrium exists in which, in a given

period, the consumption bundle (cB, cG) of old risk-averse agents is such that cB > cG. Then,

given their preferences, risk-averse agents pay nothing for the bad-realization payoff on any

security, as their marginal valuation of consumption in bad times is zero. Moreover, in order

for cB > cG to hold, a positive mass of securities with higher payoffs in the bad state than

in the good state must be sold to risk-averse agents. But those producers would be strictly

better off either selling the bad state payoff to risk-neutral agents, or simply consuming it

themselves. The case in which cB < cG can be similarly ruled out.

To see why risk-neutral agents must earn a premium assume that the opposite holds. Then

producers earn strictly more on any security they sell to risk-averse agents. But since risk-

averse agents always have positive wealth, the supply of securities to them must be strictly

positive. If producers bear the cost in order to sell two securities the benefit of doing so

compared to selling everything to risk-neutral agents, the gross revenues from doing so must

be strictly positive.
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Knowing this, it must be in any equilibrium that

qA,t(x(B), x(G)) =
min(x(B), x(G))

R̄t,2

where

R̄A,t =
min{cAo,t(B), cAo,t(G)}

at
.

Furthermore, since it only makes sense to issue risk-free securities to risk-averse agents, pro-

ducers choose a risk-free payoff xA ≥ 0, risky-payoffs xN for type N agents, and an end of

period consumption plan cP2 to maximize:

xA
R̄A,t

+
T (G|ηt−1)xN(G) + T (B|ηt−1)xN(B)

R̄1,t

− 1− ζ1{xA>0 and xN>0} + εE(cP2 |ηt−1),

where feasibility, i.e., the non-negativity restriction on security payoffs imposes:

xA ≤ min {Π(w(B); zB),Π(w(B); zG)}

xA + xN(B) + cP2 (B) ≤ Π(w(B); zB),

xA + xN(G) + cP2 (G) ≤ Π(w(G); zG).

The first restriction says that risk-free payoffs must be risk-free hence have to be deliverable

even under the worst-case realization of profits. The other two restrictions are feasibility

condition for each possible realization of the aggregate state. To ease notation in the statement

of our next result, write

Π(z) = min {Π(w(B); zB),Π(w(G); zG)}

as short-hand notation for the lowest possible realization of profits for a particular producer
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at a particular history, while

Π̄(z) = max {Π(w(B); zB),Π(w(G); zG)}

is short-hand for the highest possible realization of profits. The solution to the producer

problem satisfies a simple bang-bang property, recorded in the following proposition:

Proposition 2. Among active projects and µ-almost surely:

1. Either xA = 0 or xA = Π(z);

2. Producers pay ζ to sell securities in two markets when:

T (G|ηt−1)
(
Π̄(z)− Π(z)

)
R̄N,t

+
Π(z)

R̄A,t

− ζ > ε
(
Π̄(z)− Π(z)

)
+

Π(z)

R̄A,t

, and,

T (G|ηt−1)
(
Π̄(z)− Π(z)

)
R̄N,t

+
Π(z)

R̄A,t

− ζ >
T (G|ηt−1)Π̄(z) + T (B|ηt−1)Π(z)

R̄N,t

.

Proof. Consider a particular producer in a particular period. Starting from any feasible choice

(xA, xN , c
P ) such that xA > 0 but xA < Π(z) an increase in xA raises the objective by:

1

R̄A, t
−max

{
ε,
T (G|ηt−1) + T (B|ηt−1)

R̄N,t

}
.

Indeed, raising the risky payoff promise requires either reducing the risky security payoff

in each state by the corresponding amount, or reducing end-of period consumption. If the

expression is positive then maximizing security proceeds is done by making xA as high as

feasible. If it is negative then xA = 0 maximizes the proceeds from selling securities. This

establishes the first part of the proposition. Producers create both safe and risky securites

when the gross increase in proceeds from doing so exceeds the fixed cost, which is formalized

in the second part of the proposition.

These results follow from a fundamental feature of environments in the spirit of Allen

and Gale (1988) such as ours: producers take state prices as given, hence have a linear
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objective defined over a convex set, which, leads to bang-bang financial policies. This has

nothing to do with the fact that our agents are either fully risk-neutral or fully risk-averse.

Producer problems solve a linear problem simply because they are small hence their actions

have no impact on pricing kernels. When producers choose to create some risk-free debt, they

maximize the production of such debt.

The second condition says that producers sell two types of securities when two conditions

are met. To understand these conditions recall from lemma 1 that in that case R̄N,t > R̄A,t

so that producers earn strictly more revenues from revenue creation by selling to both agent

types rather than simply dealing with risk-neutral agents. That gain in revenue must exceed

fixed cost ζ. This means in particular that these agents must have a zB high enough that they

can create high quantities of safe assets. So those projects have to safe in that sense. But,

at the same time, they cannot be overly safe since otherwise agents would simply sell what

they can to risk-averse agents and consume what small surplus they generate during good

times. Producers who issue two securities must have a sufficiently high gap between zG and

zB. These considerations will play a key role in interpreting the outcome of our upcoming

simulations.

3.2 Aggregation and GDP accounting

The aggregate production function that results from adding up the individual projects’ pro-

duction plans takes a familiar neoclassical form. In order to derive it, let ZΘ ⊆ IR+
2 denote

the set of types that operate projects (an equilibrium object) given the aggregate state, Θ,

of the economy, where we dispense with time subscripts to reduce clutter. Let K denote the

aggregate quantity of capital used to operate active projects in a given period. In equilibrium

this has to equal the measure of projects activated:

K =

∫
ZΘ

dµ.

It will be useful to define the average productivity among active projects when the real-
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ization of the aggregate state is η ∈ {B,G}:

z̄(η) ≡
∫
ZΘ
zηdµ∫

ZΘ
dµ

,

and to note that this implies Kz̄(η) =
∫
ZΘ
zηdµ.

In equilibrium, the measure of labor supplied is one at all dates, but generalizing to other,

off-equilibrium employment levels, let N denote the total mass of employment. Then, for the

labor market to clear, and using the solution to the projects’ labor choice problem, we must

have that for each possible realization, η, of the aggregate shock:

N =

∫
ZΘ

n∗(zη, w(η))dµ

= n∗(1, w(η))

∫
ZΘ

zηdµ

= n∗(1, w(η))Kz̄(η).

We can now write the aggregate production function given aggregate capital, aggregate

labor and the aggregate productivity shock:

F (η,K,N) =

∫
ZΘ

z1−α
η n∗(zη, w)αdµ

=

∫
ZΘ

zηn
∗(1, w(η))αdµ

=

∫
ZΘ

zη

(
N

Kz̄(η)

)α
dµ

=

(
N

Kz̄(η)

)α ∫
ZΘ

zηdµ

= z̄(η)1−αK1−αNα. (3.1)

This is a standard-looking neoclassical production function, where the term z̄(η)1−α plays the

role of measured TFP, which in this environment is a function of the efficiency of activated
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projects.

As we will discuss in more depth in section 4, this expression immediately implies that the

effects of making security creation cheaper on TFP must be ambiguous. Unlike in traditional

models of financial development, there are no untapped efficiency gains at the project level.

The net impact of any change in the environment on TFP boils down to whether new entrants

are more or less productive than already active and exiting producers. If anything, and as

we will confirm via numerical simulations later, new entrants following a drop in security

creation costs are more likely to be relatively low-productivity producers. Simply put, highly

productive producers are active regardless of whether security creation is cheap or expensive.

The set of equilibrium conditions defined above implies an aggregate feasibility constraint

that must hold every period. On the expenditure side, define aggregate consumption as the

sum of each agent type’s consumption,

Ct ≡ θA
(
cAy,t + cAo,t

)
+ θN

(
cNy,t + cNo,t

)
+ cP2,t + cP1,t+1

where cP2,t is the second-period consumption of producers who operate at date t while cP1,t+1

is the first period consumption of producers who operate at date t+ 1.

Aggregate investment is the sum of next period’s capital and the expenditures intermedi-

aries incur in creating new securities:

It = Kt+1 +

∫
ZΘ

ζ1{xA>0 and xN>0}dµ.

The result is that we can express the aggregate feasibility constraint in a familiar form,

Ct + It = Yt.

That is, GDP equals the sum of aggregate consumption and investment.
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3.3 Existence

Existence of an equilibrium will be guaranteed if given in a given period and in any current

state, namely, an arbitrary triplet {aA, aN , η−1} of wealth for the two household type and

aggregate shock in the most recent period, rates of return (R̄A, R̄N) and wages w(B), w(G)

can be found so that security and labor markets clear. The associated law of motion for wealth

simply follows from the fact that wealth levels at the start of a given period are the previous

period’s wage, times the fixed savings rate implied by the preferences we have specified.

Proposition 3. An equilibrium exists.

Proof. Let {a1, a2, η−1} be the starting state of the economy at a particular date. Start

with a guess (RN , RA, w(B), w(G)) for the four equilibrium prices we need, and compute

the corresponding set Z(RN , RA, w(G), w(B)) ⊂ IR2
+ of active producers. Next, compute

excess demand for each security type and labor for each of the two possible realizations of

the aggregate shock in the current period. Specifically, starting with risky securities created

for risk-neutral agents:

EDN(RN , RA, w(G), w(B)) = aN −
∫
Z(RN ,RA,w(G),w(B))

E(xN(z))

RN

dµ,

where E(xN(z)) is the expected payoff of risky securities created by producers of type z ∈

Z(RN , RA, w(G), w(B)). As for risk-averse agents:

EDA(RN , RA, w(G), w(B)) = aA −
∫
Z(RN ,RA,w(G),w(B))

xA(z)

RA

dµ,

where

xA(z) ∈ {0,Π(z)}

is the risk-free payoff selected by producers of type z ∈ Z(RN , RA, w(G), w(B)). Excess
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demand for labor when the aggregate state is good is

EDL
G =

∫
Z(RN ,RA,w(G),w(B))

n∗(wG, zG)dµ− 1

and the corresponding expression defines EDL
B for the case where the aggregate shock is bad.

We need to prove that
(
EDN , EDA, ED

L
B, ED

L
G

)
is zero for at least one four-tuple of prices.

Holding other prices fixed, each element of the ED demand vector is continuous and

strictly monotonic in its own price. It also diverges without bound as each price goes to zero.

Existence of the zero we need follows from classical arguments. To see this, for all n ∈ IN ,

define An =
[

1
n
, n
]4

. Then define Gn : ED (An) 7→ An by

Gn(y1, y2, y3, y4) = arg max
RN ,RA,w(G),w(B)∈An

w(B)y3 + w(G)y4 −RNy2 −RAy1,

Roughly speaking, G raises wages when there is an excess demand for labor and lowers rates of

returns when there is an excess demand for securities. The Theorem of the Maximum implies

that Gn is non-empty, upper hemi-continuous and convex-valued. It follows that Gn × ED

has a fixed point on ED(An)× An.

Letting n go to +∞ gives a sequence of prices. That sequence must have a bounded

subsequence. To see why, assume for instance that RA diverges to +∞. Then at least one

wage must fall to zero.8 Say that w(B) goes to zero. So, then, must w(G) since otherwise

there would eventually be an excess supply of labor in the good state, which, given our

mapping, would mean that w(G) follows 1
n

at least along a subsequence. According to the

same mapping, collapsing wages require that excess supply for labor remain positive in both

states, which means that aggregate labor demand is bounded above, which means that profits

are bounded above (since they are linear in the wage bill.). But then a diverging RA would

imply that excess demand for safe securities is eventually positive, which would imply that

8Otherwise, profits are bounded above unless demand for labor diverges to infinity (profits are linear in
the wage bill) along a subsequence. If labor demand diverges, wages must converge to zero in at least one
state.
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RA eventually follows 1
n

at least along a subsequence. Arguments are similar for the other

three prices.

Since the sequence of fixed points above is bounded above and below, it must have a

convergent subsequence. None of the associated prices can converge to zero. Assume for

instance that w(B) did converge to zero. Given the mapping we have defined, this requires

that aggregate labor demand remains below 1 in the bad state so operating profits in the

bad state converge to zero. Since w(G) cannot diverge to +∞ as established in the previous

paragraph, excess labor demand in the good state has to be non-negative infinitely often

which requires that w(G) also converges to zero at least along a subsequence. But then either

return would have to diverge to infinity since otherwise with vanishing wages there would

have to be an excess demand for labor eventually, which is incompatible with declining wages

given our mapping. Again, the other prices can be dealt with using similar arguments.

It follows that along the convergent sequence of fixed point introduced above, the price

part of the fixed point is eventually in the interior of An. But given the definition of Gn this

is only possible if all excess demands are zero. This completes the proof of existence.

The construction implicit in the proof above underlies the computational approach we will

employ in our numerical simulations.

3.4 Comparative statics: a preview

Having established the existence of equilibria, we can now use our framework to study the

relationship between the intensity of financial engineering activities and standard measures

of economic development and productivities. There are at least two natural measures of the

quantity of financial engineering in our environment. First, we can measure the volume of

securities issued by producers who choose to bear the security creation cost. Second, we can

measure the amount ∫
ZΘ

ζ1{xA>0 and xN>0}dµ
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producers spend on security creation activities. Both measure are, of course, endogenous. We

will consider two changes to the environment that may cause these equilibrium quantities to

rise.

First and perhaps most naturally, a drop in the security creation cost ζ, holding prices

constant, can only cause an increase in the fraction of producers who choose to bear that cost.

Whether that drop also causes a decline in aggregate security creation costs is ambiguous

since, while the cost per producer is cheaper, more producers choose to bear it. Second,

we will consider a permanent increase in the fraction of risk-averse agents. Third, we will

consider an increase in the savings rate of risk-averse agents. We view the second experiment

as proxying for the well-documented increase in appetite for safe assets over the past two

decades. This second experiment potentially makes the extraction of safe securities from

risky projects more profitable. Loosely speaking, our first exercise corresponds to a supply-

driven increase in engineering activities while the second and third exercise corresponds to

demand-driven increase.

Tracing the effects of these shocks is greatly complicated by the fact that they both have

an impact on prices in general equilibrium. For instance, we would expect greater demand

for safe assets to depress safe returns. In the next section, we resort to calibrated numerical

simulations to quantify the effect of these shocks.

In this section we preview the results one should expect from these quantitative explo-

rations using a simple parametric example. Assume that producers are scaled up versions

of one another in the sense that zG
zB

is µ-almost surely a constant. Put another way, almost

surely, zG = zAG while zB = zAB, where z > 0 is the producer’s skill level and AG > AB > 0

are aggregate shocks common to all producers. Under those assumptions, the search for mar-

ket clearing wages becomes one dimensional. The fact that ZΘ is set prior to the realization

of the aggregate shock, and hence is the same regardless of that realization, also means that

if we know what bad time wages w(B) are in a particular period, only one value of w(G)

can also clear wages during good times. Furthermore, the Cobb-Douglas functional forms we

have assumed for production functions imply that w(G)
w(B)

is a constant greater than one. In
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this case, producer talent is summarized by a scalar zB ∈ IR+. Security creation polices, as a

result, become simple.

Lemma 4. Assume that zG
zB

is µ-almost surely a constant. Then security creation policies are

fully characterized by two thresholds zt ≤ z̄t in every period. Producers become active when

zB > zt and bear the security creation cost when zB > z̄t.

The intuition for this result is simple. Only producers whose scale is high enough can

generate enough security creation profits to overcome the fixed cost. Since in this parametric

example producer types are one-dimensional, only the most qualified producers choose to

create different securities for each type.

We can further simplify the example by assuming that, holding other parameters the same,

zG
zB

is high enough that it is never profitable for any producer to only sell securities to risk-

neutral agents. Given ζ, when zG
zB

is high enough, the gap in profits between good and bad

times is so high that producers are always better off selling the excess profits they generate

in good times to risk-neutral agents than consuming it. With this assumption, producers

whose talent is between the two thresholds described in the lemma sell their entire output to

risk-neutral agents.

So consider now a marginal drop in security creation costs ζ in a particular period. Holding

prices the same, that drop cannot have any effect on the lower threshold since, at that

threshold, producers only issue one security. In turn, and once again holding prices the same,

wages, output and aggregate TFP cannot change. It follows that, in this example, general

equilibrium effects are the only possible source of impact of drops in ζ on macroeconomic

aggregates. At original prices and original thresholds, labor markets continue to clear but

there is an excess supply of safe securities. So one would expect the risk-free rate to go up and

the upper threshold to fall. These, in turn should cause an excess demand for risky securities,

which causes the return earned by risk-neutral agents to fall. Holding wages the same, a fall

in the return producers have to pay risk-neutral agents causes a fall in the lower threshold,

and in turn an increase in labor demand and output.
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The fact that changes in security creation costs have no direct, partial equilibrium effect

on producer participation suggests that, quantitatively, their effect on output are bound to

be small. Our upcoming numerical simulations will confirm this intuition. More surprisingly,

they will show that the effect of increased on security creation can be negative. To understand

why this can happen, observe that in our model, we must have, following any change in the

environment,

Change in capital formation = Change in spending on securities

− Change in security creation expenditures

− Change in producer consumption/rents. (3.2)

We argued above that the first term on the right-hand-side must go up as ζ falls. Security

creation expenditures, on the other hand, cannot be monotonic in ζ since they are zero when

ζ is zero and must return to zero once ζ is so large that no cash-flow splitting takes place.

There must be regions, in other words, where expenditures on creation costs rise as ζ falls.

Our simulations will show that this effect can be large enough to dominate the behavior of

the other components of capital formation. Our simulations will also show that the final

term, producer rents (which equal the sum of all κ’s net of the capital put in place), can be

non-monotonic in ζ as well, but it plays a negligible role, quantitatively, in our findings.

4 Numerical simulations

To illustrate how the consequences of securitization booms for macroeconomic aggregates

may vary depending on whether such rise is supply- or demand-shock driven, we run two

experiments. In the first, we compare economies that differ only in security creation costs.

Starting with an economy with no security creation costs, we increase these costs until no

cash-flow splitting takes place in equilibrium. In the second, we compare economies that

differ only in the fraction of agents of each type (risk neutral or infinitely risk averse). In
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particular, in the second experiment, all economies being compared face the same cost of

security creation.

4.1 Parameterization and algorithm

In our model economy, agents live for two periods, working in the first one and living off their

savings in the next. Correspondingly, we will think of a period as representing 25 years. We

specify the transition matrix T for aggregate shocks so that the probability of remaining in

the bad state is TBB = 0.2 and the probability of remaining in the good state is TGG = 0.9.

This implies that the economy spends close to 90 percent of the time in the good state.

We make

Z = {(zB, zG) : zG ≥ zB and (zB, zG) ∈ [0, z̄]× [0, z̄]} ,

while the skill distribution function µ(Z) is a truncated bivariate normal. We set z̄ = 750 and

the mean of the distribution to (7.5, 15), which together imply a (project) output difference

of 1% a year between good times and bad times (28% for a 25 year period) and a risk-free

annual interest rate of 1.2% for our economy with the lowest security creation costs. The

resulting distribution of aggregate shocks is shown in figure ??. This skill distribution also

implies a ratio of producer rents to value added by the risky production sector of around 10%

throughout our simulations, which is reasonable given the approximation for this moment

obtained by Corbae and Quintin (2016) using US private corporate sector data.

Given our log preferences, β pins down the ration of savings to labor income. We target

savings of one third, which requires β = 0.5. Finally, we set the fraction of risk-averse agents

in the benchmark economy to θ = 0.5.

Standard arguments show that our economies eventually converge to a stochastic steady-

state, i.e. an invariant distribution of all endogenous variables in our model.9 To obtain

statistics for all endogenous variables in this stochastic steady-state, we adopt a traditional

9See Brock and Mirman (1972).
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Markov chain Monte Carlo approach.10 Specifically, our algorithm is as follows:

1. Given parameters, solve for household and intermediary policy functions for every pos-

sible aggregate state of the economy;

2. Draw a 100-period sequence of aggregate shocks {ηt}100
t=1 using the Markov transition

matrix T and record the value of all endogenous variables starting from an arbitrary

value of aggregate wealth;

3. After dropping the first 10 periods, so that assumed initial conditions have at most a

negligible effect on the value of endogenous variables, compute average values for all

endogenous variables.

To facilitate comparisons across economies with different costs, we use the same draw of

random aggregate shocks throughout our simulations.

4.2 Varying security creation costs

Figure 2 displays producer policies for four different securitization cost levels and assuming

that the state of the economy is (aA, aN , η−1) = (1, 1, G). A mass of projects is left inactive

because they are unprofitable in expected value terms, regardless of the security structure

used to finance them. For any given productivity level in the bad state (zB), there is a

threshold level of productivity in the good state (z̄G(zB)) above which the expected profits

cover the cost of capital and any possible security creation costs and, as a consequence, the

project is activated. The threshold (z̄G(zB)) is weakly decreasing in zB. As zB falls, producers,

regardless of how they finance their activities, need to be (at least weakly) compensated by

increases in zG.

When security creation costs are zero, issuing risk-free securities is weakly dominated by

tranching (producers that have exactly the same profits in both states are indifferent between

the two). Making costs slightly positive, as we do for ζ = 0.005, reveals exactly who these

10See Tierney (1994).
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producers are, as issuing risk-free securities becomes slightly more profitable than tranching

and, as a consequence, a sliver of active producers starts to do so as shown in the panel

labeled ζ = 0.005 of Figure 2. As costs increase further, the measure of these risk-free issuing

producers expands around the ray where profits are the same in both states.

There can be two different types of tranching establishments operating, depending on

which state they enjoy higher profits. Given a certain productivity level in the bad state

(zB), producers that have a sufficiently high zG (who are vertically above the sliver of riskless

producers in the panel labeled ζ = 0.005 of Figure 2) have lower profits in the bad state

and therefore only make payments to risk neutral agents in the good state. On the other

hand, producers with a sufficiently low zB (vertically below the sliver of riskless producers),

actually have lower profits in the good state (because wages are higher then) and therefore

make payments to risk neutral agents in the bad state.

As long as ζ > 0, for low enough zB producers prefer to issue risky securities than to

tranche and make payments to risk neutral agents in the good state only. This explains the

strip of active producers along the vertical axis issuing risky securities only. An analogous

reason explains why it is preferable for low enough zH to issue risky securities only, as opposed

to tranching to make payments to risk neutral agents in the bad state only.

Finally, and obviously, when security creation costs are high enough, no producers en-

gage in it. Producers either issue risk-free securities exclusively or they issue risky securities

exclusively, as seen in the panel labeled ζ = 0.7 of Figure 2.

As security creation costs increase, the share of tranching establishments falls monoton-

ically, as shown in panel A of Figure 3. This puts pressure on the relative issuance of risky

securities to increase, which, because the demand for the two security types is constant means

that for markets to clear the price of risk-free securities rises and correspondingly, the risk-free

rate falls. The same reason explains why risk-neutral agents pay less for risky securities as

security creation costs increase, and therefore enjoy a higher rate of return. Both rates of

return are shown in panel C of Figure 3.

To understand what happens to capital formation as costs vary, it is important to un-
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derstand what happens to expenditures incurred in securitization activities. When ζ = 0,

these expenditures are trivially zero. As ζ increases, they start rising, but eventually fall back

down to zero, as the share of tranching establishments goes to zero. This results in a Laffer

curve-like relationship between security creation costs and expenditures, shown in panel D of

Figure 3.

Capital formation in our model is given by total spending in securities net of producer

rents and security creation expenditures. Given that spending in securities is proportional to

output (as it is a fixed fraction of wages that are linear in output) and security creation ex-

penditures initially increase, capital formation falls as security creation costs start increasing.

Eventually, as costs continue to increase but securitization expenditures start falling, capital

formation comes back up, resulting in a non-monotonic relationship with security creation

costs. Producer rents are also non-monotonic (panel E of Figure 4, but they are quantitatively

less meaningful.

Output displays the same non-monotonic relationship with securitization costs as capital,

as shown in panel A of figure 4. Quantitatively there also is not much difference between

the changes in these two variables, resulting in little action in TFP, as shown in panel B

of Figure 4. To understand why this is the case, recall that in our model economy, given

our assumption that project activation requires one unit of capital, the measure of active

projects equals capital formation. As we argue in the example in section 3.4, the share of

active projects only changes because of general equilibrium effects. Since TFP is the average

productivity of active producers, this results in small, but non-monotonic, TFP changes.

4.3 Varying the share of each type of agents

In this second experiment we keep the security creation cost fixed at the intermediate level

of ζ = 0.15, and vary instead the share of the two types of agents, from θ = 0.1 (10 percent

risk-averse agents) to θ = 0.9. As the share of risk-averse agent rises, the share of wealth held

by those agents increases and so, therefore, does demand for safe assets. This puts pressure

29



on the risk-free rate, as Figure ?? shows. It remains to be explained why RA eventually

start rising...

As θA increases, the share of active establishments or, equivalently, capital formation, falls.

This happens because, as we saw in Figure ??, the marginal producers issue risky securities

exclusively. As R̄N increases and the revenues of these producers fall, they exit. Moreover,

supra-marginal producers that were hitherto at the margin between borrowing from risk-

neutral agents exclusively and borrowing from risk-averse agents exclusively (at θ = 0.1 no

producers elect to tranche) switch as a reaction to the changes in the rates of return that

are necessary to clear the securities markets at the higher θ. In particular, some producers

start tranching and paying the security creation cost. Figures ?? show that both the share of

tranching producers and consequently the expenditures on security creation are monotonically

increasing in θ.

As the share of active projects fall, so does output, but because it is the relatively less

productive establishments that are exiting as θ rises, TFP increases. Why are the projects

financed exclusively by risk-neutral agents less productive? Because if they were productive

enough (meaning if their worst-case profits were high enough) they could afford to pay the se-

curity creation cost which would allow them to finance themselves at lower rates by borrowing

from risk-averse agents.

Unlike what happened in our previous experiment, the consequences for the use of aggre-

gate resources that stem from the increase in securitization are not mitigated by the fact that

per producer cost is reduced. In this case, with fixed per producer securitization costs, as more

producers optimally decide to pay the cost and securitize risky cash flows, total expenditures

in securitization rise monotonically to reach almost 1% of GDP, as shown in Figure??.

These two experiments illustrate how two different mechanisms – one could loosely call

the former supply-driven and the latter demand-driven – could have originated the recent

securitization boom. Our results show that these two mechanisms imply very disparate out-

comes. In particular, the steady fall in risk-free rates we have seen in the last two decades is

a piece of evidence pointing in the direction of an increase in demand for risk-free securities
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as being at the origin.

5 Conclusion

By allowing producers or intermediaries to create securities that appeal to investors with

heterogeneous tastes, financial engineering leads to more investment broadly defined, which

accords well with intuition. Less intuitive is the fact that the resulting securitization boom

may not lead to increases in output, capital formation and TFP. Much of the spending on

engineered securities may be dissipated into security creation costs and producer rents.
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Figure 2: Producer policies
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Figure 3: Aggregate outcomes I: changing securitization costs
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Figure 4: Aggregate outcomes II: changing securitization costs
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