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Abstract

We present an environment where long term investors sometimes choose to remain

uninformed about the value of their long-term investment. They do so to preserve the

liquidity of their investment in secondary markets. When and only when there is a risk

that secondary markets may be shallow, more information can reduce the expected payo�

of agents who need to cash out. Even given direct and costless control over information

design, stakeholders choose to incentivize managers to withhold interim information. In

such an environment, imposing transparency can lower investment and welfare.
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1 Introduction

We present an environment where long term investors sometimes choose to remain uninformed

about the value of their long-term investment. This is in contrast to the traditional view

that attributes the lack of communication between investors and managers as a result of

agency problems. The presumption is that managers have information that would be valuable

to stakeholders but that it is too costly to set up incentives for managers to share this

information.1 In our model, investors have full control over the design of the information

policy and yet they choose to be kept in the dark to preserve the liquidity of their investment

in secondary markets. Investors choose to introduce agency frictions between themselves and

managers to restrict their access to information.

To make this point, we present an environment where more information leads to better di-

vesting decisions but increases the risk that stakeholders may lose value if they must liquidate

their positions early. If the key bene�t of opacity is to mitigate potential liquidation losses,

incentives to restrict information �ows should depend on the expected depth of secondary

markets. In our model, stakeholders choose to limit the revelation of new information on

asset quality when and only when the depth of secondary markets may a�ect the liquidation

value � a situation Allen and Gale (2005) describe as cash-in-the-market pricing.

We develop our argument in a simple model of liquidity needs in the spirit of Diamond

and Dybvig (1983) and Jacklin (1987). Agents can invest in a long-term project but face the

risk that they may need to consume at an interim stage, before the project matures. When

they need to liquidate their investment early, they can either scrap the project or, instead, sell

it to more patient agents as in Jacklin (1987). Our model di�ers in several key aspects from

the canonical Jacklin framework. First, our agents are risk neutral. Second, the long-term

project is risky and its probability of success � its quality � is drawn at the interim stage.

Third, when they make the original investment, agents can design how much information

they would like to receive on the project quality at the interim stage. Information is free so

that agents can choose at no cost full public information, no information at all, or anything

1See for instance Milgrom and Roberts (1988) for a review of the traditional literature on agency costs,
information, and compensation contracts. They present a canonical model where �[...] it is always optimal
for the �rm to adjust its promotion criteria and information collection rules from what would otherwise
be optimal.� Along related lines, the cheap-talk literature started by Crawford and Sobel (1982) shows that
when there is any misalignment of preferences between an informed expert and a principal, all Bayesian-perfect
equilibria feature some information loss. Even if the principal can write incentive contracts, full revelation is
generally suboptimal. Implementing direct revelation, even when feasible, requires the provision of incentives
whose cost can outweigh the bene�ts. See Krishna and Morgan (2008) for a review of these ideas.
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in between these two extremes.

The optimal information design becomes more opaque, in a sense we make precise, as

the risk of early liquidation rises. While more information allows investors to scrap early

when ex-post e�cient, it can also reduce the expected payo� when agents are constrained

to liquidate their investments. Indeed, investors may be forced to liquidate at a price that

does not re�ect the fundamental value of the project when secondary markets are shallow.

Therefore, cash-in-the-market pricing in the sense of Allen and Gale (2005) imposes an upper

bound on the investment's liquidation value in some states, thus making our risk neutral

investors e�ectively risk averse. Coarser information provides some insurance to those early

investors who have to liquidate their project.

Given this logic, it would seem that the optimal situation for investors would be to observe

project quality privately at the interim stage in order to make e�cient scrapping decisions

without incurring the risk of liquidation losses. That intuition turns out to be correct from

an individual point of view, but wrong in equilibrium. As in Milgrom and Stokey (1982) all

private information is revealed when projects trade in secondary markets. As a result, private

information can hurt investors if they cannot commit to restrict it. It is optimal, therefore,

for investors to restrict their access to information in some fashion.

One natural way to implement the desired solution is for investors to delegate the project

continuation decision to a manager. The manager's compensation scheme should induce

him to reveal the desired level of information. We show that the compensation scheme that

implements the constrained optimal scrapping policy features a participation in revenues when

the project matures and a severance payment if the manager chooses to scrap it early. In

other words, the natural implementation of the optimal contract in our environment involves

imposing a veil between investors and investment managers.

Doing so, we draw a connection between the literature on the optimal level of information

pioneered by Hirshleifer (1971, 1972) and the cash-in-the-market pricing literature introduced

by Allen and Gale (1994, 2005). Allen and Gale concentrate their attention on how the depth

of secondary markets may a�ect asset price volatility. We focus instead on the consequences

of cash-in-the-market pricing on the optimal control of the fundamental information investors

receive. Hirshleifer (1971) shows that the prospect of interim information can make agents

with long-term investment and consumption plans worse o� by introducing �redistributive

risk� once the new information emerges. Along di�erent lines, Hirshleifer (1972) shows that

interim or, in his terminology, �emergent� information can lower the market value of long-

3



term projects unless the project �can be converted into money at a price representing only a

time-discount of the value at maturity.� In our model, original investors recognize that the

possibility of cash-in-the-market pricing makes their investment subject to this second type

of �Hirshleifer e�ect� and, rationally, choose the level of information that maximizes their

ex-ante welfare.

A link between information and cash-in-the-market pricing is also present in Bolton, Santos

and Scheinkman (2011). They consider a model of asymmetric information between short and

long-term investors with cash-in-the-market pricing. Short-term investors may sell an asset

either because of a liquidity shock or because they know the quality of the asset is low.

The more short-term investors wait to sell their asset, the more likely they are to receive

information about its quality, which leads to an ever increasing discount on the asset price.

These investors take the asymmetry of information as given whereas our short-term investors

recognize the trade-o� they face and devise their information structure in an optimal way. In

a related vein, Zetlin-Jones (2013) describes a model where, at the optimal contract, more

opaque �rms tend to emphasize short-term sources of �nance. One could think of our result

as the converse: corporations whose stakeholders value liquidity highly are more likely to be

opaque. Von-Thadden (1995) shows that the possibility of asymmetric interim information

between investors and �rms can cause the optimal contract to feature �short-termism� in the

sense that short-term investments are preferred to more productive investments. Our model

can generate the same outcome, but for di�erent reasons.

Our paper is also related to the banking literature where banks are usually seen as espe-

cially opaque.2 Using a Diamond and Dybvig (1983) argument Kaplan (2006) holds the view

that banks retain information because revealing bad news makes it more costly to prevent

a bank run. In a similar vein, Goldstein and Sapra (2014) argued that revealing too much

information about the results of a stress test may induce a run on banks.3 Given the roll-over

risk of banks, Bouvard, Chaigneau, and De Motta (2014) study the optimal disclosure policy

of banks. They show that the inability of regulators to commit to reveal information in crisis

times gives rise to excessive opacity. Like us, Goldstein and Leitner (2013) relate optimal

information disclosure to a possible Hirshleifer e�ect. They propose a model of interbank

loans where information disclosure may prevent a market freeze but eliminates risk sharing

opportunities in the interbank market.

2See Morgan (2002) and Flannery et. al. (2004, 2013).
3Goldstein and Sapra (2014) survey the literature on the cost and bene�ts of disclosing stress test results

and they conclude that full disclosure is rarely desirable.
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Still in the banking literature, Dang et. al. (2013) study an environment where mar-

kets do not implement the �rst best allocation because the possibility of bad news cause

investors to face liquidation losses. They show that a bank that commits not to share its

project continuation decisions with late investors and �nances early withdrawals by selling

information-insensitive securities to these late investors can implement the �rst best alloca-

tion.4 We discuss their results further and compare them to ours in Section 7.3.

In Diamond (1984), opacity is a side e�ect of any banking activity: the bank is opaque

because it is too costly for each depositor to monitor the borrowers. A similar e�ect is at play

in Diamond (1985) in the context of the release of information by a �rm. There information

disclosure is optimal because stockholders then save the cost of acquiring information. More

recently, Andolfatto, Berentsen and Waller (2014) show that the threat of undue diligence

� the possibility that agents may decide to acquire private information � can in�uence the

socially optimal disclosure policy.5

On the technical side, the information design problem we solve is similar to the Bayesian

persuasion game studied by Kamenica and Gentzkow (KG, 2011). Our original investors

design messages knowing how receivers will act given the information they get. The optimal

information design takes the form of what KG call a �straightforward signal� which amounts

to a recommendation to the receiver to take a speci�c action. In our setting this is the

recommendation to either scrap the project or hold on to it. One di�erence between our

environment and KG's is that our senders � the early investors at date 0 � know that they

will receive the message at date 1 but that secondary market investors will receive it as well.

The fact that our setting contains multiple receivers turns out to be inconsequential however

since all receivers interpret the message in the same way.

Our implementation of the desired solution via delegation is reminiscent of Aghion, Bolton,

and Tirole (2004). They consider a set-up where an entrepreneur can either work or shirk,

but will work if he is monitored by an investor who may have a need for liquidity at an

interim stage. A trade-o� exists between monitoring and liquidity since the investor has

private information on the quality of the �rm and may use it to his advantage. Instead, we

design a mechanism that induces the manager to keep most information to themselves.

4See also Gorton and Pennachi (1990), Breton (2007), Dang, Holmstrom and Gorton (2012) and Siegert
(2012).

5For the literature on disclosure regulation see Leuz and Wysocki (2008) and the references therein. In
particular, Kurlat and Veldkamp (2013) argue that information disclosure can reduce investors' payo�s as it
decreases asset return.
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The remainder of the paper is organized as follows. Section 2 introduces the environment

and de�nes an equilibrium. Section 3 characterizes pricing given the information made avail-

able in secondary markets. In Section 4, we show that some opacity is typically rational and

we discuss the key, testable implications of this result. In Section 5 we consider the case

with private information and we describe a natural implementation of the optimal informa-

tion design that involves delegating project and information control to a manager. Several

extensions of our basic framework are presented in Section 6 while Section 7 presents various

applications of our theory. Section 8 concludes.

2 The environment

Investment opportunities and preferences Consider an economy with three dates t =

0, 1, 2, and unit measures of two types of agents. The �rst type of agents are early investors

who are endowed with one unit of a consumption good at t = 0. The second type are late

investors who appear at date t = 1 with an endowment A > 0.

As will soon become clear, the size of the endowment of late investors pins down the size of

secondary markets in our model. Therefore, we will think of A as capturing the expected depth

of secondary markets when early investor select their information disclosure policy. When A

is low, secondary markets are shallow, and, as we will argue below, assets are more likely ex

ante to sell at a price that is below their expected payo�, as in Allen and Gale (2005). Our

main result will be that this leads early investors to opt for a more opaque information policy.

One simplifying assumption we are making for now is that A is deterministic. This shortens

several of the upcoming arguments but dealing with the stochastic case does not present

major technical di�culties or change the nature of our results, as we explain in Section 6.2.

A fraction π ∈ [0, 1] of early investors and a fraction 1−π of late investors have the desire

to consume at date 1 while other agents want to consume at date 2. In other words, half of

all agents consume at date 1, while the other half want to consume at date 2.6 We will refer

to π as the liquidity risk for early investors. As of date 0, early investors do not yet know

6This symmetric assumption on the risk of early consumption for early and late investors simpli�es notation
in the upcoming analysis by implying that a mass π of agents want to liquidate their projects a date 1 (namely
early investors who turn out to be early consumers) and the same mass of agents are willing to buy projects
at date 1 (namely late investors who turn out to be late consumers.) Even though this pins down the number
of potential buyers in secondary markets, we can still vary the depth of secondary markets at will by varying
A. Doing so, in fact, gives us one of the main comparative statics we establish in this paper, see Corollary
4.2.
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whether they will want to consume early or late hence they seek to maximize:

u(c1, c2; π) ≡ πc1 + (1− π)c2,

where c1 is their expected consumption in period t = 1 conditional on being an early consumer

while c2 is expected consumption at t = 2 conditional on being a late consumer.7

Agents have the option to store the consumption good across dates. The economy also

comprises a risky project that, if continued at full scale until date 2, yields either R >

1 or nothing. Activating the project requires an aggregate investment of one unit of the

consumption good at date 0. In particular, all early investors must commit their endowment

to the risky project in order to activate it. When they do so, early investors receive a claim

to the project's output which is proportional to their contribution to the initial capital.

As of date 0, early investors know that the success probability q ∈ [0, 1] will be drawn at

date 1 from a distribution F with a continuous and strictly positive density in [0, 1]. At date 1,

any investor can scrap their portion of the project for a payo� S ∈ (0, 1) which is independent

of q. When fraction κ ∈ [0, 1] of the project is scrapped at date 1, the total project payo�

at date 2 is (1 − κ)R when the project is successful, zero otherwise. The scrapping decision

captures the option to interrupt, downsize or re-purpose long-term investment projects in

which cases S is the value of the next best use of the invested capital, net of re-purposing

costs.8

Parameters could in principle be such that early investors are always better o� storing

their endowment but we focus on the more interesting case where early investors choose to

invest in the risky project. Speci�cally, we assume throughout that

1 < πmin

(
A,

ˆ
qRdF

)
+ (1− π)

ˆ
qRdF. (2.1)

As will become clear below, (2.1) implies that early investors choose to invest in the risky

project even when they have no information about project quality. Of course and as we

7We assume here that a law of large number holds: π is both the fraction of early investors who turn out
to be early consumers and the likelihood that a particular early investor will become an early consumer.

8As we will explain below, it turns out in this environment that if it is optimal for one primary investor
to scrap their share of the project, it is optimal for all investors to do so, so that either the entire project is
scrapped or it is continued at full scale. Be that as it may, the speci�cation of scrapping options we use embeds
a constant return-to-scale assumption. One could imagine that scrapping by some investors diminishes the
returns of remaining investors. This would only increase incentives by remaining investors to scrap as well,
which would reinforce the prediction that either the entire project is scrapped or it is continued at full scale.
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will discuss at length in this paper, early investors can typically do better by releasing some

information about project quality at date 1.

Also to shorten the exposition we will assume throughout that A > S. This will imply that

there are always enough resources in secondary markets to pay at least the scrapping value

of the project. In addition, only one price clears the Walrasian market for project shares that

we now describe.9

Market for project shares At date 1, agents can buy or sell claims to the risky project's

output in a Walrasian market. Agents take the equilibrium share price as given. They buy

or sell shares to maximize their expected utility given the information they have.

In appendix 9.1 we show that our model with Walrasian trade makes the exact same

predictions as a model where early investors who wish to consume early are matched with

exactly one late investor who wish to consume late and the former gets to make the latter a

take-it-or-leave it o�er. The transaction we model in the secondary market is also isomorphic

to a secured debt contract between early and late investors that gives early investors the

share price p(m(q)) at date 1 in exchange for a payment of R contingent on the project being

successful.10

While both the option to scrap and the option to sell project shares in secondary markets

enable early investors to get an early payo�, they are very di�erent in nature. Scrapping a

share of the project eliminates the possibility of a project payment at date 2. One should

think of it as a redeployment of the capital invested in the risky project to a di�erent use

and more information allows investors to exercise that option more e�ciently. In contrast,

secondary markets enable investors to sell claims to date 2 payo�s. More information does

not raise the ex-ante value of that option but it can lower it as we will show. The value of

the scrapping option could depend on new information about q but we assume for simplicity

and without loss of generality for our purposes that it is independent of q.

Information This paper is principally about what early investors choose to know about

q once it is drawn at date 1. To learn about q, early investors can choose to activate an

information technology at date 0. This technology sends a message m once q is realized at

9When A < S, the scrapping option dominates what secondary markets can o�er regardless of what
information is available at date 1. Secondary markets are irrelevant, therefore, and full information is always
best for original investors.

10 See appendix 9.8.
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date 1. Early investors are free to choose any message function in the following set:

{m : [0, 1] 7→ B([0, 1]) : q ∈ m(q) for almost all q∈[0,1]}

where B([0, 1]) is the space of Borel subsets of [0, 1]. Restricting the choice of message functions

to satisfy q ∈ m(q) is without loss of generality11 and has the advantage that the technology

can be thought of as announcing a subset of [0, 1] to which q belongs. In Section 5, we will

discuss the option for early investors to keep information to themselves and argue that this

does not a�ect any of our results. Finally, restricting our attention to deterministic message

functions is also without loss of generality as we will show when we fully characterize the

optimal information design choice of early investors.12

Agents are free to become fully informed about the project quality by setting m(q) = {q}
for all q ∈ [0, 1]. One of our main results, however, is that early investors usually opt for

much coarser information technology designs, unless they know they will consume late, that

is unless π = 0. Choosing no information � m(q) = [0, 1] for all q ∈ [0, 1] � is always an option

as well, but is not optimal either unless π = 1.

Equilibrium At date 0, early investors establish a message function and decide whether or

not to commit their endowments to the risky project. At the start of date 1, late investors

appear, all consumption types are revealed, and a message m∈ B([0, 1]) becomes available.

Agents immediately and correctly translate this message into an expected likelihood of success

for the long-term project,

E(q|m) =

´
m
qdF´

m
dF

.

Given those expectations, we show in the next section that a unique price clears the Walrasian

market for shares at date 1. Given this price, early agents decide, �rst, whether to scrap their

share of the project.13 Agents who do not scrap their project shares decide whether to buy

and sell their claim to output at date 2. At date 2, all agents consume the proceeds from

11To see why this is without loss of generality take any Borel-measurable mapping h from [0, 1] to an
arbitrary message space. Then the set-valued mapping m : [0, 1] 7→ B([0, 1]) de�ned for all q ∈ [0, 1] by
m(q) = h−1 ◦ h(q) has the desired properties and conveys exactly the same information as h. In other words,
as long as all agents understand the selected design of the information technology, they can invert any message
into a subset of [0, 1].

12See the proof of Proposition 4.1.
13The next section shows that that there is no disagreement on this decision between early and late con-

sumers. In fact, in all equilibria, either the entire project is scrapped or it is continued at its original scale.
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their claims to the risky project or their storage investments.

In this context, an equilibrium is a decision by early investors whether or not to activate

the risky project, a message function, and, for each possible message at date 1, a share price,

scrapping decisions, share trading decisions by early and late investors, and consumption

plans, such that:

1. Given the message function, all agent decisions at date 1 are optimal and the Walrasian

market for shares clears for every possible message;

2. No other message function and associated Walrasian price schedule gives early investors

a higher expected payo� as of date 0.

In Appendix 9.8 we show that the allocation that obtains in this equilibrium is the one that

a social planner who seeks to maximize the welfare of early investors would select, as long as

the planner must abide by minimal participation constraints and cannot preclude early and

late investors from entering into side-trades at date t = 1. In particular, the equilibrium we

characterize is constrained-e�cient.

3 Market for project shares

Given π ∈ [0, 1] and A > 0, let p(m(q)) be the price of a project share when the message

m(q) is issued at the start of period 1. To keep notation simple we do not make explicit the

dependence of market prices on the model's parameters. If E(q|m(q))R ≤ S then secondary

market buyers are willing to pay no more than S per project share and no early investors is

willing to accept less since they could always scrap their share of the project. In that case, it

must be that p(m(q)) = S for markets to clear.

Assume, on the other hand, that E(q|m(q))R > S. If p(m(q)) > E(q|m(q))R then all

early investors sell but no late investors are willing to buy since they are better o� storing

their endowment. So we must have p(m(q)) ≤ E(q|m(q))R. If the inequality is strict only

early consumers may sell (π shares are supplied at the most). Late investors for their part,

consume their endowment if they turn out to be early consumers at date 1. Those who

are late consumers spend all their endowment on projects if p(m(q)) < E(q|m(q))R making

demand πA
p(m(q))

which is consistent with market clearing only if p(m(q)) = A which, in turn,

is consistent with the premise that p(m(q)) < E(q|m(q))R only if A < E(q|m(q))R. When
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A ≥ E(q|m(q))R the same argument leads to p(m(q)) = E(q|m(q))R as the only market

clearing price. In summary,

Proposition 3.1. Given a message function m, at the Walrasian stage and for almost all

q ∈ [0, 1],

p(m(q)) = max [S,min{E(q|m(q))R,A}] .

The argument is illustrated in Figure 1. Given the message, the share price must fall

between S and the expected payo� E(q|m(q))R. As long as the price is the expected payo�,

late investors who want to consume late are willing to spend their entire endowment on

project shares making demand (drawn in dashed blue) the entire interval between 0 and
πA
p

= πA
E(q|m(q))R

. To move beyond that demand level, the price must fall and demand becomes
πA
p
for p ∈ (0, E(q|m(q)R). Supply, shown in solid red, is [0, π] when p = S, is exactly π when

p ∈ (S,E(q|m(q))R) and becomes [π, 1] when p = E(q|m(q))R since in that case even late

consumers are willing to sell their share.

The �gure shows the case where there are not enough resources to purchase all the shares

at fair value, that is when

πA

E(q|m(q))R
< π ⇐⇒ E(q|m(q))R > A.

Then the only equilibrium price is p(m(q)) = A. In other words, the price is dictated by

the resources available in the market rather than the project's expected payo�. This is a

situation Allen and Gale (2005) describe as cash-in-the-market pricing. On the other hand,

if πA
E(q|m(q))R

≥ π, then the equilibrium price is the expected payo�. We will show that cash-

in-the-market pricing implies a trade-o� between information and liquidity.

One simple consequence of this result is that Walrasian prices always exceed the proceeds

early investors receive when the project is scrapped. This implies that there is no con�ict of

interest between patient and impatient investors when it comes to the continuing decision.

If patient investors wish to continue the project at full scale, impatient investors are at least

as well o� agreeing with this decision as they would be if the project is scrapped. In any

equilibrium then, either the project is scrapped in full with all investors agreeing with this

decision or it is continued at full scale.

We assume that A is �xed but q varies while Allen and Gale (2005) assume the reverse.

We need q to vary to create an interesting information problem. The key aspect of both

environments, however, is that projects may sell at a discount when A is small relative to q.
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Share price

π

E(q|m(q))R

πA
E(q|m(q))R

S

Project shares

p(m(q)) = A

Figure 1: Walrasian market for project shares under cash-in-the-market pricing

We keep A �xed for simplicity but making both q and A stochastic is easy and does not alter

any of our results, as we show in section 6.2.14

Observe also that the payo� early investors obtain when projects trade is the same as

when early investors who experience liquidity shocks are matched with one late investor who

wishes to consume late and make a take-it or leave-it o�er to these agents. It follows that all

the results we establish below regarding the rational choice of information technology hold

in a simple search environment exactly as they do in a Walrasian environment. In appendix

9.1, we also show that proportional bargaining does not change the qualitative nature of our

results.

4 Rational Opacity

We are now in a position to characterize the information design decisions of early investors.

It will be instructive to �rst consider a parametric example where the trade-o� between

information and liquidity is transparent. We will then characterize the general solution to

our information problem.

14One could also assume that the measure of late investors who desire early consumption is stochastic.
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4.1 An illustrative example

Assume that technological parameters are such that

A <

ˆ
qRdF. (4.1)

In this particular part of the parameter space, there is cash-in-the-market pricing in secondary

markets when no information is provided as the share price cannot be above A, as we explained

above. In this case, the fact that A > S implies that information reduces the sellers' expected

payo� from secondary markets since late investors are already willing to pay A when no

information is provided. In other words, the Walrasian price is as shown in Figure 2 for the

two polar information cases: The black solid line shows the price with full information and

the dashed red line shows the price with no information. In this speci�c case, information

cannot have any positive e�ect on liquidation value but when the news is bad, if q is low, it

can have a negative e�ect on secondary market prices.

q

Share price

S

S
R

A
R

A

Figure 2: Price under full information (solid) and no information (dashed).

To make clear the resulting trade-o� between information and liquidity, observe that if
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early investors opt for no information, their ex-ante payo� is

πA+ (1− π)

ˆ 1

0

qRdF. (4.2)

Indeed, they can sell their share of the project for A in secondary markets when they must

consume early and, if they turn out to be late consumers then they keep their shares to

maturity, as no new information becomes available at date 1. If on the other hand early

investors opt for full information, their expected payo� is

π

(ˆ S
R

0

SdF +

ˆ A
R

S
R

qRdF +

ˆ 1

A
R

AdF

)
+ (1− π)

(ˆ S
R

0

SdF +

ˆ 1

S
R

qRdF

)
. (4.3)

Information is valuable ex-post for late consumers because it enables them to make e�cient

scrapping decisions, thus obtaining a higher expected payo�,

ˆ S
R

0

SdF +

ˆ 1

S
R

qRdF >

ˆ
qRdF,

but it is costly for early consumers because it reduces the expected liquidation value of project

shares at date 1: ˆ S
R

0

SdF +

ˆ A
R

S
R

qRdF +

ˆ 1

A
R

AdF < A.

A trivial consequence of these observations is that given only a choice between full information

and no information, early investors would only opt for full information if their liquidity risk

is low enough.

We can say much more. Assume that agents can design the message function in any way

they wish. Revealing information cannot improve early investors' payo� if they must consume

early, as condition (4.1) implies that their payo� is already at its maximum if they do not

receive any information. The only point of revealing some information, then, is to make better

scrapping decisions. It follows that there is no need for the message function to partition [0, 1]

in more than two subsets: scrap or hold. While late consumers would like to be informed

when qR < S, there is no value in having more information than just q ≥ S
R
. To summarize,

while the value of marginal information in [ S
R
, 1] is non-negative, revealing that information

could reduce early investors' payo� when they have to consume early.15

15A formal proof of this claim as well as other claims we make in this intuitive discussion are provided in
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These simple observations give us the �rst source of opacity. It is not rational for early

investors to reveal any information beyond what is strictly necessary to induce e�cient scrap-

ping decisions. Late investors, for their part, would value �ner information, but they have no

means to induce the original investors to provide it.

We will show in full generality below that the two subsets, scrap and hold, are non-

overlapping intervals.16 We can thus restrict our search for optimal message functions to the

following class of functions, indexed by q̄ ∈ [0, 1]: for q ∈ [0, 1],

m(q) =

{
[0, q̄] if q < q̄

(q̄, 1] otherwise.

At date zero then, early investors need only choose q̄. We refer to q̄ as the scrapping threshold.

An obvious possibility is to set q̄ = S
R
which would enable late consumers to always make the

ex-post e�cient scrapping choice. In this case, the message is designed to convey the most

information subject to the constraints we have outlined above. This design, however, turns

out to be optimal only when π = 0 and early investors know they will consume late.

To characterize the optimal design, notice that the early investors' payo� is

V (q̄) ≡ π

(ˆ q̄

0

SdF +

ˆ 1

q̄

AdF

)
+ (1− π)

(ˆ q̄

0

SdF +

ˆ 1

q̄

qRdF

)
. (4.4)

Since V is continuous on a compact set, an optimal q̄ exists for all π ∈ [0, 1]. While the

payo� function is not necessarily concave in the scrapping threshold for arbitrary density

functions, it is hill-shaped with a single peak so that the optimal threshold is in fact unique.

Furthermore, V is strictly submodular: the early investor's marginal payo� is decreasing in

π. Therefore, the higher the liquidity risk, the greater the cost of increasing the scrapping

threshold. Intuitively, there is a tradeo� between the desire to scrap when it is e�cient to

do so and the fact that better information can lower the project's resale value. This implies

that investors who face a relatively low liquidity risk will choose a higher scrapping threshold.

And, inversely, investors facing a high liquidity risk will prefer a lower scrapping threshold

and possibly no information at all.

the next section where we take on the optimal design problem in full generality.
16Our arguments in this respect are similar to those of Kamenica and Gentzkow (2011). See the proof of

Proposition 4.1 for details.
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In this simple parametric case, one can show17 that the optimal scrapping cut-o� is

q̄ = max

{
S − πA

(1− π)R
, 0

}
.

Indeed, we argue below that if the optimal scrapping solution is interior it must satisfy the

following �rst order condition:

πA+ (1− π)q̄R = S.

Any q > q̄ such that the left hand side of the equality exceeds the right-hand side should be

included in the holding message, as holding then dominates scrapping. Of course, consistency

requires that the holding strategy be optimal for late consumers given the message. But (4.1)

guarantees that they are willing to hold on to their shares if no new information is revealed,

so they remain willing to do so upon learning the good news that q ≥ q̄. For the same reason,

since late investors are willing to pay A before hearing that q ≥ q̄, this remains true after

learning the good news.

This result implies in particular that the optimal q̄ is zero on ( S
A
, 1] and decreases strictly

on [0, S
A

]. More liquidity-minded (high π) early investors thus opt to reveal less information.

It also suggests that deeper secondary markets � a higher A � causes early investors to opt

for more opacity. But, as will now see, this only holds in the particular part of the parameter

space on which this section focuses. The relationship between the depth of secondary markets

and opacity turns out to be more complicated than this simple example would suggest. To

see this, we now turn to the general solution of the information design problem.

4.2 The general solution

This section provides the general solution to our problem. Intuitively and as discussed in

the example above, a trade-o� only exists between liquidity and information when project

shares sell at a price below their expected value. Otherwise, it is never optimal to withhold

information. Capturing this idea is the main direction in which we need to generalize the

17For a concrete example, assume that F is uniform. Then

V (q̄) ≡ q̄S + π(1− q̄)A+
(1− π)R

2

(
1− q̄2

)
.

This function is strictly concave in q̄ and its derivative vanishes at S−πA
(1−π)R .
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example. To shorten the exposition, we will proceed assuming that π ∈ (0, 1).18

The previous example assumed that A <
´
qRdF which holds when A is low. When

A <
´
qRdF lowering the scrapping threshold would eventually mean that projects sell at

their expected value in the holding region, so that cash-in-the-market pricing no longer holds,

hence there is no remaining reason to withhold information. Therefore, in the general case,

a key quality cuto� is the threshold q̃(A) past which, if the message q ≥ q̃(A) is emitted at

date 1, projects sell at price A, below their expected value. This threshold is de�ned by

q̃(A) = max

{
q̃ ∈ [0,

S

R
] : E(qR|q ≥ q̃) ≤ A

}
(4.5)

with the understanding that q̃(A) = 0 if E(qR) > A. Original investors have no incentive to

shrink the scrapping message beyond that threshold. Formally,

Proposition 4.1. The optimal information design consists of a scrapping message and a

holding message. The scrapping message is F−essentially an interval [0, q̄(π,A)] where

q̄(π,A) = max

{
S − πA

(1− π)R
, q̃(A)

}
. (4.6)

The proof provided in the appendix consists of several steps. First we show that we can

restrict the search for the optimal message function to binary functions � scrap or hold �

and that these functions are two non-overlapping intervals with no gaps. This implies the

existence of a scrapping threshold q̄ such that agents receive the scrapping message whenever

q̄ < q and the holding message otherwise. Second, we show that q̄ ≥ q̃(A). Otherwise, and

given (4.5), raising q̄ would strictly raise the early investors' expected payo�. Therefore their

problem is to maximize their expected payo� (4.4) subject to q̄ ≥ q̃(A), which yields (4.6).

Finally, we show that random messages would not help early investors in achieving a higher

expected payo�.

Cash-in-the-market pricing � the possibility that market price may depend on available

resources on the demand side for projects � plays a critical role in our results. It introduces

a cap on prices hence on the early consumer's payo�, thus making their payo� function non-

linear in m(q). As a consequence, even though agents are risk neutral, liquidity concerns can

make them behave as if they were risk-averse.

18 When π = 0 the secondary market can play no role and early investors opt for full information. If π = 1,
information has no value and choosing no information is always optimal.
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4.3 Key implications

This general result has several immediate consequences. First, it yields the main comparative

statics results we seek to establish in this paper.

Corollary 4.2. At the optimal information design:

1. q̄(π,A) decreases weakly with π, strictly so if and only if q̄(π,A) ∈ (q̃(A), S
R

).

2. q̄(π,A) is U-shaped in A. Given π ∈ [0, 1], there exists Ā(π) ≤
´ 1
S
R
qRdF such that

q̄(π) = S
R

if A ≥ Ā(π), and the optimal scrapping thresholds �rst decreases and then

increases on [S, Ā(π)].

The �rst item states that more liquidity-concerned investors choose a lower scrapping

threshold. A testable version of this prediction is that organizations whose stakeholders value

liquidity highly should be especially opaque. This is the converse of the main point made

by Zetlin-Jones (2013). The negative relationship between the liquidity risk and information

revelation comes from the basic trade-o� between liquidity and information we discussed

earlier. The second item says that the trade-o� is only operative when the market price of

projects is a�ected by the endowment of late investors. It should be clear that scrapping low

quality projects is always optimal when A ≤ S. Hence, in this case q̄(π,A) = S
R
. At the

opposite end, when A is so large that shares always sell at their expected payo�, information

cannot a�ect liquidation value and there is no need to take the risk of holding the project when

it would be e�cient to scrap, so that again q̄(π,A) = S
R
. In between these two thresholds,

there is cash-in-the-market pricing in secondary markets and the scrapping threshold does

depend on A.

Notice that a lower threshold q̄(π,A) is an increase in opacity: as the threshold decreases,

the set of project quality for which all investors receive the same information is larger. Put

another way, original investors become more prone to curtail the release of bad news. One

testable version of this prediction is that investments for which secondary market opportu-

nities are ample should feature few if any curbs to the release of interim information about

fundamentals.

One direct way to test this prediction is to study the relationship between the size of

secondary markets for a particular project and proxies for transparency.19 More indirectly,

opacity should be more prevalent in industries where barriers to entry into secondary markets

19Morgan (2002) or Flannery et al. (2013) propose various ways to proxy for the opacity of corporations.
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� legal restriction or the cost of learning about complex investment projects, for instance �

are high. As should be clear and as Section 6.3 will formalize, industries with high entry

costs are more likely to feature cash-in-the-market pricing. Another indirect way to test this

basic prediction of our model is that opacity should be especially prevalent when secondary

markets are in their infancy as they tend to be for new industries.

The risk of shallow secondary markets, in our world, is a necessary condition for opacity to

serve a purpose. But Corollary 4.2 also says that the relationship between the expected depth

of secondary markets is not globally monotonic. To make this stark, if secondary markets do

not exist, full information is obviously optimal. As secondary markets grow from insigni�cant

and start becoming relevant opacity initially worsens but eventually falls. In other words, our

model produces a Kuznets-curve-like relationship between secondary market development and

transparency.

More fundamentally, Proposition 4.1 also implies that equilibria can be ine�cient. In

cases where q̄(π,A) < S
R
, early investors choose a scrapping threshold that induces them to

keep the project in some states of the world when they should not. Therefore, total expected

output is strictly below what would prevail under full information as is, therefore, aggregate

expected consumption. The ine�ciency arises from the fact that ignorance is bliss for those

agents who must sell their project. In summary:

Corollary 4.3. The equilibrium allocation under rational information design can be Pareto

ine�cient.

Finally, an important result is that while information distortions may lower expected

output below its potential, this does not imply that imposing transparency necessarily causes

output to rise. In fact, yet another consequence of proposition 4.1 is that doing so may lead

to a decrease in expected output.

Corollary 4.4. Imposing full information can lead early investors to opt for storage rather

than the risky project. In particular, it can cause expected output and expected consumption

to fall.

As in Andolfatto et. al. (2014) therefore, more transparency can imply less investment

and hence destroys total surplus. Here, this occurs because imposing full information lead

liquidity-minded investors to opt for less productive projects with safer short-term returns.

Our result is also reminiscent of Goldstein and Sapra (2014) who claim that disclosing too
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much information on stress test results could trigger runs and destroy value. Von-Thadden

(1995) also presents a model where the possibility of asymmetric interim information between

investors and �rms can cause the optimal contract to feature �short-termism� in the sense

that short-term investments are preferred to more productive investments. The mechanism

behind this aspect of our model is quite di�erent however: stakeholders are concerned about

their ability to liquidate their investment at a good price and transparency, therefore, can

reduce the value of entering into long-term investment projects.

5 Private information

So far we have assumed that if information is made available to some agents, then it is public

information. Our results seem to suggest that early investors would prefer to observe project

quality privately at date 1 to make e�cient scrapping decisions without incurring the risk

of liquidation losses. This section shows that this intuition is wrong. While it is true that

each investor has an incentive to be better informed than other agents, this is true for all

agents, and general equilibrium arguments imply that acquiring private information can only

hurt investors. Since they are unable to commit not to act on their private information, their

willingness to trade in secondary markets will make public any private information. Therefore

private information can only hurt investors if they cannot commit to restrict it. One solution

to this paradox is to delegate the reception of information to a representative investor with

the right incentives.

5.1 Trade reveals all private information

Assume that early investors always observe the interim signal perfectly but privately. In that

case, as long as late investors observe the supply of project shares, the Walrasian market

reveals all private information which means that the equilibrium allocation is the same as in

the full information case.

Remark 5.1. If early investors observe project quality privately then the only equilibrium

allocation is the full information equilibrium allocation.

This observation should not come as a surprise: agents' willingness to trade at the interim

stage reveals all private information in this environment as in Milgrom and Stokey (1982).
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Since unbridled access to private information can lead to an inferior allocation from the

ex-ante point of view of early investors, they have an incentive to observably commit to

remaining ignorant. To explore this possibility, assume now that agents can make the design

of private information they select observable to late investors, or, equivalently, that they can

somehow commit to it. In this case, late investors observe what information design early

investors selected. At the trading stage, late investors can infer all information early investors

received from their willingness to trade shares and, therefore, the equilibrium is the same as

when the signal is public.

Remark 5.2. If the design of the information technology is observable, the rational informa-

tion design choice is the same regardless of whether the message is private or public.

Put another way, all the results we established in the previous section go through un-

a�ected when information is private rather than public. In addition, this section says that

investors who must confront liquidity risk have incentives to observably commit to reveal any

information they have (say, via delegated monitoring) or to not trade on the basis of that

information (say via regulations that ban trading on the basis of undisclosed information.)

5.2 Implementation via delegation

The analysis above suggests that agents have an incentive to �nd ways to commit to ignore �

or at least not to act upon � their private information. In this section we show that a natural

way to implement the desired solution is to delegate the project continuation decision to a

risk-neutral representative agent (e.g. a manager, operating entity or General Partner) with

the right incentives. Assume then that the coalition of early investors hire an agent with no

holdings in the project and give her the authority to scrap the project at date 1. Assume

further that only this agent is given full access to the signal at date t = 1.

Consider the class of compensation scheme whereby the manager receives a �xed payment

M > 0 if the project is scrapped � think of it as a severance payment � and, if the project

is continued, receives a payment αR if the projects succeeds� think of this part of her com-

pensation as a participation in revenues. For simplicity, we assume that the manager has no

mass so that, in particular, the payment she receives does not a�ect the expected surplus

generated by the project. We now have:
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Proposition 5.3. Let q̄(π) be the optimal scrapping threshold given π ∈ [0, 1]. Let the

manager's compensation scheme (M,α) be such that

M = αq̄(π)R.

Then the manager implements the optimal scrapping policy and, correspondingly, early in-

vestors expect the constrained-e�cient payo�.

Investors can implement the ex-ante optimal allocation and information design by creating

ex-post con�ict of interests between a manager and at least some of the stakeholders. Late

consumers would prefer upon discovering their type that all information be revealed. By

committing to delegation with a carefully designed set of incentives, stakeholders are commit-

ting to the ex-ante optimal information environment. Far from being a friction that ought to

be addressed as it is in traditional models, agency costs serve to implement the constrained

optimal solution.

Note that the proposition does not pin down the level of the compensation scheme so that

in principle, the entire one-dimensional space of schemes that satis�es the desired property

implement the optimal policy. Since the manager has no mass, investors are indi�erent across

such schemes as long as they involve �nite payments. In Appendix 9.5 we introduce moral

hazard and we show that � among other insights � doing so provides a natural way to pin

down the level of the optimal compensation scheme.

6 Extensions

This section considers several important variations on the model we have used to establish

our main results.

6.1 Continuous project control variable

The coarse nature of the optimal information design that obtains in the model we have used

so far is not simply a consequence of the assumption that the only meaningful decision that

takes place at date 1 is whether to scrap or hold. To see this, generalize our model by

assuming that at date 1 and after project quality q has been drawn the expected project

payo� is qR(y, q) where y is a control variable and R is a function that rises continuously
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with q for all y. We assume that the choice of control at date 1 cannot be hidden from late

investors. So knowing q is bene�cial as it allows to choose the optimal y.20 We write y(m) =

arg maxy E [qR(y, q) | q ∈ m] for the action that maximizes the expected payo� of a holder

of the project if investors receive some message m in period 1. Notice that qR(y({q}), q) ≥
qR(y(m), q) for any q whenever q ∈ m, so that investors always prefer to have full information.

We assume there is cash in the market pricing. That is we de�ne q̃ as the solution to

E [qR (y([q̃, 1]); q) | q ≥ q̃] = A,

so that whenever investors receive message [q, 1] where q > q̃ then the project will sell for A

and we further assume that q̃ < 1.

This modeling change should a�ect the optimal design of information since knowing q now

matters not only for continuation decisions but also for optimal operation choices. It turns

out the optimal information design now reveals full information at the bottom and at the

top of the quality interval, while giving no information in the middle, in a way the following

proposition makes precise.

Proposition 6.1. Suppose π < 1. Then there is q0 > q̃ and q1 ∈ (q0, 1] such that the optimal

message structure is m(q) = q for all q ∈ [0, q0)
⋃

(q1, 1] and m(q) = [q0, q1) for all q ∈ [q0, q1).

Furthermore,

E [qR (y([q0, q1]); q) | q ∈ [q0, q1]] = A.

When π = 1, q0 = q̃ and q1 = 1.

As before, the region where there is no information is a consequence of cash-in-the-market

pricing, and the region becomes larger as the probability to consume early increases. The

intuition is simple. Information is useful as it allows to choose the optimal control y. When

investors know they want to consume early (π = 1), they do not care about information

details for high quality projects as they know they will not operate the project. So they

choose to bundle high quality projects with as many low quality projects as possible, and

our previous information structure obtains. When π < 1 however early investors trade-o�

liquidity and optimal control. For q large, full information is optimal because they know the

20For instance, one could specify
R(y, q) = q1−αyα − yw

where w > 0 is a unit cost and α ∈ (0, 1). One could then think of y as labor input or as capacity utilization
in the sense of Greenwood et. al (1988).
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project would sell for A if they want to consume early, while they can choose the optimal

control variable when they turn late consumers. For q low, investors know the project sells

for S as it should be scrapped and full information is also (weakly) optimal there. For middle

range quality, investors trade-o� liquidity and optimal control just like in the benchmark

version of our model, and the range depends on the probability to consume early. The higher

the probability the larger the range.

In turn, the same delegation approach with the appropriate compensation scheme im-

plements the optimal allocation. Optimal delegation of control thus implements the optimal

solution even when continuous decisions are present. The bottom line is that introducing con-

tinuous control variables attenuates but does not eliminate incentives by investors to control

information �ows.

6.2 Stochastic secondary market depth

We have assumed for simplicity that the size A of secondary markets is known and independent

of the project's quality q when early investors make their information design choice at date 0.

A speci�c consequence of this simplifying assumption is that cash-in-the-market binds when

the project is of high quality, while the project trades at its fundamental value when it is

of fairly low expected value. This need not be the case. This section provides a simple

example where (a) A is correlated with the expected value of the project, and (b) sales below

the project's fundamental value occur when the project is expected to be of low value. One

natural interpretation of this last event is that bad news about the project tend to produce

�re-sale discounts.

Consider once again the environment we studied in Section 4.1 but suppose that the

quality of the project is randomly drawn from distribution FB with probability η ∈ (0, 1]

and FG with probability 1 − η, where FG �rst order stochastically dominates FB. In other

words, agents expect a better project outcome if the G (�good�) distribution is active. In

contrast to the foregoing analysis, assume that the endowment of late investors is correlated

with the distribution of the project's quality: it is A > 0 with probability η ∈ (0, 1] � where

A continues to satisfy assumption 4.1 � while with probability 1− η � when the distribution

of project's value is FG � the endowment is so large that project shares always sell at the

expected payo� when they are not scrapped. In this environment, the state of secondary

markets is correlated with project outcomes.

Given this modeling change, we need to ask whether the message can depend on the
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realized state of the world (Good or Bad) hence on the depth of secondary markets. Both

cases are manageable but for concreteness we will deal with the case where the message cannot

be made contingent on the date 1 state. It is easy to see that the optimal message function

is once again binary � scrap or hold � and that the scrapping message is an interval that

includes q = 0. Letting q̄ denote as before the upper bound of the scrapping interval, the

optimal information design choice must now maximize:

V (q̄; η) ≡ η

[
π

(ˆ q̄

0

SdFB +

ˆ 1

q̄

AdFB

)
+ (1− π)

(ˆ q̄

0

SdFB +

ˆ 1

q̄

qRdFB

)]
+ (1− η)

[ˆ q̄

0

SdFG +

ˆ 1

q̄

qRdFG

]
= ηπ

(ˆ q̄

0

SdFB +

ˆ 1

q̄

AdFB

)
+

(ˆ q̄

0

S [(η(1− π)dFB + (1− η)dFG] +

ˆ 1

q̄

qR [(η(1− π)dFB + (1− η)dFG]

)
The maximization problem is very similar to the case where the size of secondary markets is

deterministic except that investors now worry about the joint event that they may be early

consumers and that, as the same time, secondary markets may be shallow, which occurs with

probability ηπ . As long as η > 0 � that is, as long as there is a risk that secondary markets

may be shallow � V remains submodular and, in particular, some opacity is optimal. In

other words, the assumption we have implicitly maintained that A is independent of project

quality is made only for convenience and plays no role in our comparative statics results.

The key assumption is that when early investors select the optimal information design, they

attach positive probability to the event that secondary market prices will be determined by

market depth rather than by project quality. All that matters for our purposes, therefore, is

that market depth and project quality not be perfectly correlated. Credit freezes and more

generally �nancial crises are natural examples of events that a�ect secondary markets beyond

what changes in fundamental project quality alone would justify.

6.3 Endogenous market depth

So far we have treated market depth as independent of information design. However, in the

model, opacity impacts the rents secondary market buyers generate which creates a feed-

back e�ect from opacity to market depth. To make this clear, this subsection embeds our
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one-project model into a broader framework where the size of secondary markets is fully

endogenous.

Consider an economy that contains a unit interval of locations each containing one in-

vestment project and a unit mass of early investors both exactly as described in section 2.

The economy also contains an unbounded mass of late investors who appear at date 1 each

endowed with exactly one unit of the consumption good. Those late investors can choose

to store their endowment. They can also choose to join one location which enables them to

participate in Walrasian markets for project shares in that location when they open at date

1. For concreteness we assume that the decision to join a particular market takes place before

any information is revealed at date 1.21 This simpli�es the analysis by making the size of

secondary markets independent of the message issued although, of course, that size depends

on the information design selected by primary investors.

Joining a location is potentially costly however and we denote by ci ≥ 0 the cost associated

with joining location i ∈ [0, 1]. For simplicity but without loss of generality, we take this cost to

be a utility cost so that late investors who enter a location all have their unit of endowment

available for purchasing project shares. We interpret this cost as capturing the time and

resources necessary to locate a particular market and learn its characteristics.

A general equilibrium in this context is a location decision for each late investor � allowing

for the possibility that a given investor participates in no market � and, at each location, an

information design choice by early investors and Walrasian prices for projects at date 1 such

that:

1. The information design maximizes the ex-ante payo� of early investors given Walrasian

prices at each location;

2. Secondary markets clear at all locations, i.e Walrasian prices are as de�ned in 3.1 where

A now stands for the mass of late investors in a given location;

3. Net of entry costs, late investors earn the the same payo� (namely 1) as they would if

they stored their endowment.

To understand why the third condition must hold, observe that if late investors earned a

return net of learning costs that exceed storage returns in some locations, they would keep

21We make this assumption for simplicity only. It would still be the case that cash-in-the-market must
prevail when entry decisions are made after the date 1 message is issued. The complication is that the size of
markets may now depend on the message.
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entering locations with the highest return since they are available in unbounded numbers.

Entry must eventually drive all returns net of entry costs down to the storage return. The

following results characterizes equilibria in this extension of our basic model.

Proposition 6.2. Equilibria are such that all markets where entry costs are strictly positive

feature cash-in-the-market pricing and incomplete information.

The proof we provide in the appendix formalizes the two-way connection between market

depth and opacity. Given a potential size Ai of secondary markets in location i, only one

information policy � i..e only one scrapping level q̄i(Ai) ≤ S
R
� is optimal. The associated

rents for secondary market investors are

F (q̄i(Ai)) + [1− F (q̄i(Ai)]
πE(q|q ≥ q̄i(Ai))R

Ai
− 1.

Indeed, if q < q̄i(Ai) then the project is scrapped and either sold at price S to late investors

or the proceeds of scrapping are consumer by all early investors. In that case investors

earn no more than they would from storing their endowment. If, on the other hand, the

message q < q̄i(Ai) is issued then the project is continued and late investors expect return
πE(q|q≥q̄i(Ai))R

Ai
.

Holding Ai constant, a decrease in q̄i means lower rents for late investors. To see this,

remember that continuing the project when q < S
R
yields negative returns for project holders.

In equilibrium then, more opacity in the sense of a marginal decrease in q̄i must be associated

with smaller secondary markets to preserve secondary market investors' rents. In that sense,

this environment with endogenous secondary markets exhibits a feedback e�ect from opacity

to market depth.

The key consequence of introducing endogenous and costly entry, however, is that some

measure of cash-in-market pricing hence some opacity must characterize all markets whose

entry cost is strictly positive so that gross rents that exactly o�set learning costs are generated.

Secondary markets that carry learning costs must feature some cash-in-the-market pricing in

this environment.

6.4 Optimal storage by early investors

It is interesting to compare the approach to endogenizing secondary market depth we just

described to the approach adopted by Allen and Gale (1994). That paper relies on essentially
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the same set of investment opportunities as we do and also contains similar needs for liquidity.

However, unlike us, they allow early investors to simultaneously invest in risky projects and

storage and the depth of markets at date 1, in fact, is pinned down entirely by initial storage

decisions. In particular, the possibility of cash-in-the-market pricing and the associated rents

endogenously raise the returns to storage. The crux of our argument is that there is a con�ict

of interest between early and late investors when it comes to the design of information.

Imposing a clear separation between primary investors and secondary market participants

enables us to focus on that con�ict.

To see that some separation between primary and secondary investors is necessary, suppose

that our primary investors have aggregate endowments in excess of what is needed to fund the

project and that this excess endowment is the only source of secondary market funds. Then

the solution where all primary agents hold the same portfolio and collectively agree to opt for

full information generates the highest possible payo� since it maximizes expected output. Put

trivially, agents do not have any ex-ante incentives to withhold information from their future

selves. But the moment secondary markets feature agents not involved in the original design

and there is a possibility that cash-in-the-market pricing may prevail, then the incentives to

control information we have emphasized in this paper are present.

To see this more formally and returning for simplicity to the one project case, assume that

our original investors are no longer constrained to invest all of their funds in the project but

can choose a scale 1 − a ∈ [0, 1] at which to activate the project. They store the remaining

a units. Imposing that a ≥ 0 amounts to assuming that agents cannot short the project. As

before, early investors maximize the payo� of a representative coalition member by choosing

the level of investment at date 0 and the level of opacity. As in our basic framework, there

is no reason why the coalition would choose more than two messages, scrap and hold. With

storage, the cash in the market becomes πA + (1 − π)a, since early and patient investors

can spend a on buying projects. Assuming that parameters are such that cash-in-the-market

prevails, the price for each project sold in this case is p = πA+(1−π)a
π(1−a)

. Then, given the level of

opacity q̄, the expected return per unit of capital invested in the project is

V (q̄; a) ≡ π

(ˆ q̄

0

SdF +

ˆ 1

q̄

pdF

)
+ (1− π)

(ˆ q̄

0

SdF +

ˆ 1

q̄

qRdF

)
.

= π

[ˆ q̄

0

SdF +

ˆ 1

q̄

(
A+

1− π
π

a

)
dF

]
+ (1− π)

(ˆ q̄

0

SdF +

ˆ 1

q̄

qRdF

)
.
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In addition, at date 1, early and patient investors receive the gross return from purchasing

the project in secondary markets, namely:

r(q̄; a) =
E [qR|q ≥ q̄]

p

so that the expected payo� of a member of the coalition of early investors when investing

1− a and choosing q̄ is

W (q̄, a) = (1− a)V (q̄, p) + πa+ (1− π)ar(q̄; p)

When A = 0, i.e. when early investors are also the only secondary market participants,

note that

W (q̄, a) = (1− a)

(ˆ q̄

0

SdF +

ˆ 1

q̄

qRdF

)
where we have used resource feasibility since, under the premise that there is cash-in-the-

market pricing, all resources available to late consumers are invested in the project at date

1 rather than stored. But then the optimal information design is the one that maximizes

expected output regardless of a and, therefore, full information, i.e. q̄ = S/R, is optimal. In

words, early investors have no reason to withhold information from themselves.

Now suppose A > 0. If they use storage, early investors who are late consumers can invest

in the secondary market when the project is not scrapped as they expect a higher return

than storage. But at this stage, they would rather be informed about the true quality of the

project and this e�ect pushes q̄ toward the e�cient level S/R. However as the secondary

market price is higher with storage, early investors may prefer more opacity to capture this

rent in more states when they need to consume early. So at the time of choosing the optimal

information structure, investors contrast the bene�t of transparency � increasing return of

interim investment � with the usual gain from opacity. The e�ect of a on q̄ is in general

indeterminate, but we can show22 that locally around a = 0, opacity increases if and only if

the return from the secondary market is not too sensitive to opacity. That is ∂q̄
∂a
|a=0 < 0 if

22The details of that argument are available upon request.
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and only if ∂r
∂q̄
< 1. In particular, if q is uniformly distributed,

1− S − πA
(1− π)

< A

[
1− S − πA

(1− π)R

]2

.

In words, opacity is increasing with savings if and only if rents are not too sensitive to opacity.

Notice that we already solved for q̄ at a = 0 so that the condition only depends on the deep

parameter of the model and is not an equilibrium condition.

7 Applications

This section brie�y describes several possible interpretations of our framework and discusses

our model's predictions in each of these contexts.

7.1 Private equity markets

Private equity markets have at least two salient, distinguishing features vis-a-vis their public

counterparts. They are illiquid � opportunities to liquidate partnership interests are restricted

� and they are opaque � under the typical arrangement, most original investors only receive

from fund operators the bare-minimum information needed to compute the distributions to

which they are contractually entitled. Our model establishes a clear connection between these

two features.23

To be sure, private funds tend to be opaque for a number of di�erent reasons. The vast

majority of private equity funds are structured as Limited Liability Companies or Limited

Partnerships and feature a collection of passive investors (Limited Partners, or LPs) and a

designated fund manager (General Partner, GP) who exercises sole control over the fund's

operations. In fact, under the Limited Partnership Act, it is only by relinquishing all control

to the GP that LPs are guaranteed limited liability protection. Any action that merely sug-

gests a management role by LPs exposes them to lawsuits in the event of under-performance

23Metrick and Yasuda (2010) provide a description of the typical purposes and performance of private
equity funds. Kaplan and Stromberg (2009) discuss how private equity funds built for the purpose of pursuing
leveraged-buyout (LBO) opportunities have evolved since the LBO wave of the 1980s. Gompers and Lerner
(1999) described the typical organization of Venture Capital (VC) Funds emphasizing in particular the distance
and veil that exist under the standard partnership contract between operators or general partners on the one
hand and passive investors on the other hand.
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or mismanagement. In addition � and further creating distance between LPs and opera-

tional matters � asset management is typically delegated by GPs to an operating entity (the

�investment adviser�) of their choosing and whose compensation they design.24

In our model, investors give up control over operational matters as a natural way to

limit their access to information. They do so not to limit their exposure but, instead, to

preserve the liquidity of their positions in secondary markets. Until two decades ago secondary

transactions of private interests were infrequent and con�ned to OTC markets. In the past two

decades however, intermediaries that specialize in secondary market purchases have emerged.

In a 2012 survey of 212 Private Equity LPs (see https://www.seic.com/docs/IMS/SEI-PE-

Liquidity-Challenge_US.pdf) carried out by SEU, 58% of respondents reported that they have

bought or sold assets in secondary markets while 33% of the same respondents con�rmed that

the market is �more liquid than it used to be.� Furthermore and as Galfetti et. al (2014)

explain, secondary market participants tend to be specialists suggesting that barriers to entry

into these markets remain costly.

Recent surveys of private equity investors25 suggest that even though opacity remains a

dominant feature transparency is slowly on the rise in private equity markets. In part, this

is a consequence of the massive losses institutional investors su�ered during the recent crisis

prompting many of them to ask for at least some experimentation with a new equity fund

model. But our model points to another possible explanation for enhanced communication

between operators, GPs and LPs. Secondary market options are becoming broader and

deeper. As more and larger investors enter secondary markets, our model suggests that

transparency should improve under the optimal contracting arrangement. While we have

argued that, importantly, the relationship is not monotone, deeper secondary market options

should eventually result in more transparency.

The optimal implementation we propose in section 5.2 requires highly contingent agree-

ments between passive investors, managers, and operating entities that provide �nancial re-

wards when the investment project performs well and severance payments when the invest-

ment project must be shut down early. Partnership statutes provide precisely the freedom

GPs and LPs need to enter into detailed contracts. As is well known, the majority of US

private equity funds are incorporated in Delaware. One key advantage of registering a part-

nership in that State is that under Delaware law governing partnership agreements, �duciary

24See Naidech (2011) for a thorough description of the typical GP-LP setup in the United States.
25See http://www.seic.com/docs/IMS/IMS-PE_Whitepaper_US_FINAL.pdf?cmpid=im-pe3-pr-11 for

one of many examples.
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duties are narrowly de�ned to cover default responsibilities. In that sense, Delaware provides

for the maximum �freedom of contract� to partners in unincorporated entities and, as a result,

the GP's obligations can be de�ned as narrowly as needed. With respect to transparency and

communication between GPs, operating entities and LPs, this means in particular that many

partnership agreements merely require the release of cash �ow information necessary to the

computation of distributions to LPs and, second, that any bookkeeping documents main-

tained by the GP or fund sponsor be available on demand. Stated or mandatory �duciary

responsibilities of partnership operators usually do not require the release to investors of soft

information that operating entities receive over time about the fund's prospects.

The contract �exibility a�orded by partnership statutes manifests itself in detailed incen-

tive clauses for GPs and operating entities. So called �Carried Interest� clauses describe the

performance-based part of the GP's compensation. The most typical incentive scheme takes

the form of a �promote� structure whereby the GPs or operator's share of pro�ts rises when

certain internal rate return thresholds are met by LPs, together with claw-back periods when

late losses reduce earlier returns. In the event of early termination of the fund and/or the

fund manager, �nancial obligations of all partners are described in a separation agreement

that can and often does feature severance payments.

Many partnership agreements require that investors get the approval of other partners

before selling their interests, which seems potentially inconsistent with our Walrasian market

set-up. However, the transaction we model in the secondary market is isomorphic to a contin-

gent debt contract between early and late investors that gives early investors the share price

p(m(q)) at date 1 in exchange for a payment of R contingent on the project being successful.

For more on those side-trades, see appendix 9.8. Under that contract, early investors formally

keep their partnership interest, receive p at date 1, and a net zero payo� at date 2 whether

or not the project succeeds.

7.2 IPO markets

Alternatively, one could think of the secondary markets in our framework as Initial Public

O�ering (IPO) markets. Under this interpretation, our investors play the role of founders

and initial investors who get their �rst opportunity to cash out their investments in public

markets at date 1. The fraction of π of shares can be interpreted as the fraction of initial

investors who experience a liquidity shocks. Alternatively, one could assume that all initial

investors prefer to cash out their investment at date 1 but that they must abide by lockup
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constraints.26

The fact that disclosure is limited in primary asset markets is discussed by Pagano and

Volpin (2012) among many other papers. Pagano and Volpin (2012) and Monnet and Quintin

(2016) show that limited disclosure can mitigate the adverse selection issues that result from

the coexistence of expert and non-expert markets in those markets. Our model point to

a di�erent, complementary motivation for carefully managing the release of fundamental

information about assets, namely the fact that the depth of IPO markets is uncertain. As we

have argued, when cash-in-the-market pricing is a possibility, it becomes optimal to scramble

information and bundle bad news with good news.

In this context, the implementation we propose in section 5.2 is best interpreted as the

delegation of marketing decisions to an underwriter who receives a �xed proportion of IPO

proceeds q(π̄)R. As discussed for instance by Ljungqvist (2004), the level of disclosure by

underwriters varies a lot across IPOs. The literature has also found an empirical correlation

between the level of disclosure and the level of underpricing. This �nding is broadly consistent

with our model in the sense investors who are concerned that their shares may sell at a discount

vis-a-vis the value that would prevail when markets are deep opt for more opaque disclosure

designs.

7.3 Banks

A traditional interpretation of a framework such as ours in the spirit of Diamond and Dybvig

(1983) is to think of our set of early investors as forming a bank for the purpose of creating

liquid claims backed by illiquid but productive assets. This is the interpretation adopted for

instance by Dang et al. (2013) in an environment that shares several key features with ours.27

The traditional Diamond and Dybvig bank contract involves storing part of the resources

invested at date 0. We rule that solution out by assumption since the project requires all

available funds to be activated at date 0. Instead, liquidity is provided by secondary market

investors which, in this banking interpretation, could be thought of as agents who invest

equity into the bank at date 1.

However, as is well known in this context (see Jacklin, C., 1987) and is especially clear

in a model like ours where project shares trade according to a Walrasian protocol, the inter-

26See Brav and Gompers (2003) for a discussion for a detailed discussion of lockup provisions in IPO
markets.

27See also Breton (2007).
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pretation of the implicit two-period contract as a banking contract is arbitrary. When trade

is possible at date 2, markets su�ce to deliver the constrained optimal allocation. Breton

(2007) and Dang et al. (2013) make the case that what makes banks essential is their ability

to conceal information. They are �optimally opaque institutions.�

Their banks are, in fact, fully opaque. Even though their framework is very similar to

ours, they �nd that full opacity is optimal as opposed to the partial disclosure solution that

emanates in our model. The reason for this di�erence is the fact that our model contains a

scrapping option of potentially positive value and that whether this shut-down information

is employed at date t = 1 is public information. If we allowed project managers to hide

scrapping decisions, to store scrapping proceeds when they are positive, and compensate the

manager with a carefully chosen fraction of proceeds at maturity, then it is easy to show that

the manager would scrap when and only when q ≤ S
R
, as needed to maximize surplus. In that

environment, secondary markets always pay the no-information price � scrapping decisions,

since they are unobserved, have no consequences on liquidation values � exactly as in Dang

et al. (2013). While low-quality projects may have been scrapped, secondary markets buyers

only discover that they bought bad projects when proceeds are distributed at maturity.

The assumption we make that scrapping choices are observable can be justi�ed in most

contexts on at least two distinct grounds. First, at the optimal contract, when scrapping

turns out to be optimal then the entire project is shut down, an action which seems di�cult

to conceal in practice. Second, the implementation of the �rst-best outcome described above

would involve managers selling to date-1 investors projects which they know have failed. In

most contexts, this amounts to defrauding investors. While recent events have shown that

fund and trust sponsors do defraud investors on occasions, they also show that doing so comes

with the risk of signi�cant punishment.

However, in the banking context, the primary focus of Dang et al. (2013), the assumption

that projects can be shut down unbeknownst to stakeholders seems more reasonable, for

two reasons. First, banks' key stakeholders are its di�use depositor base, each of whom has

comparatively little exposure to the performance of each of the bank's long-term investments.

Second, banks hold large and complex portfolios of positions making the monitoring of project-

speci�c actions more costly for depositors.
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8 Conclusion

In this paper we argue that curtailing the �ow of interim information about expected payo�s

can be a rational choice for long-term investors who are concerned about secondary market

depth because of a natural trade-o� between information and liquidity. A natural way to

restrict their own access to information is to delegate project management to agents whose

compensation provides them with incentives that di�er from the ex-post incentives of original

investors. In our model therefore and far from being a friction that ought to be addressed,

agency costs serve to implement the constrained optimal solution. Imposing transparency

may lower welfare.

9 Appendix

9.1 Bargaining

Here we analyze the case where early consumers and newborn are bilaterally matched in

period 1 and bargain over project shares following the realization of the public signal m(q).

To shorten the analysis, we focus on the parametric example considered in Section 4.1.

Assume that agents split the surplus from trade using proportional bargaining. We denote

by θ the share of the surplus of early consumers. Since m(q) is public, all agents expect the

long-term project to return max[E (q|m(q))R;S]. Let p(m(q)) ≤ A be the agreed price

between the early consumers and the newborn. With proportional bargaining, p(m(q)) has

to satisfy

(1− θ) [p(m(q))− S] = θ {max[E (q|m(q))R;S]− p(m(q))}

and arranging, together with the resource constraint p(m) ≤ A, we have

p(m(q)) = min {θmax[E (q|m(q))R;S] + (1− θ)S;A}

As usual in the context of proportional bargaining, newborns extract more of the surplus as

their bargaining power 1 − θ increases, in which case the price decreases to S. Agents then

expect payo�

π

ˆ
p(m(q))dF + (1− π)

ˆ
max [S,E(q|m(q))R] dF.
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If agents choose to reveal nothing, then their payo� is:

πmin

{
θ

ˆ
qRdF + (1− θ)S,A

}
+ (1− π)

ˆ
qRdF. (9.1)

If they choose to provide full information, then their payo� is:

π

{ˆ S
R

0

SdF +

ˆ 1−(1−θ)S
θR

S
R

[θqR + (1− θ)S] dF +

ˆ 1

1−(1−θ)S
θR

AdF

}
+(1−π)

{ˆ S
R

0

SdF +

ˆ 1

S
R

qRdF

}
.

(9.2)

With take-it or leave-it o�ers from early consumers (i.e. θ = 1) we obtain the same expres-

sions as in main text. As before then, given a choice only between full information and no

information, early investors choose the former if and only if their liquidity risk is below a

certain threshold.

More generally, consider now the same general class of messages as in the main text. At

date zero then, agents of type π ∈ [0, 1] choose q̄.

Proposition 9.1. The optimal information level q̄(π, θ) for agents of type π ∈ [0, 1] decreases

strictly with π and θ. Furthermore, q̄(0, θ) = q̄(π, 0) = S
R
and q̄(1, θ) = 0 for all θ > 0.

Proof. Fix π ∈ [0, 1]. Given q̄ ≤ S
R
the agent's payo� is:

π

{ˆ q̄

0

SdF +

ˆ 1

q̄

min {θE[qR|q ≥ q̄] + (1− θ)S;A} dF
}

+ (1− π)

{ˆ q̄

0

SdF +

ˆ 1

q̄

qRdF

}
.

Di�erentiating this expression with respect to q̄ yields

Sf(q̄)− πmin {θE[qR|q ≥ q̄] + (1− θ)S;A} f(q̄) (9.3)

−I{θE[qR|q≥q̄]+(1−θ)S<1}θπ

ˆ 1

q̄

q̄Rf(q̄)dF − (1− π)q̄Rf(q̄).

where I is an indicator function. Since min {θE[qR|q ≥ q̄] + (1− θ)S;A} > S, this expression

is strictly negative when q̄ = S
R
unless π = 0. Therefore only when π = 0 do agents choose

to reveal the e�cient level of information. If π = 1 then (9.3) is strictly negative even if

q̄ = 0 so that no information is revealed. Also, since q̄ < S
R
for all interior π the derivative

is uniformly decreasing as π rises through (0, 1) which implies that q̄ decreases strictly, as

claimed. Turning to the e�ect of θ, when θ = 0 the derivative is strictly positive if q̄ < S
R

36



and strictly negative if q̄ > S
R
. Therefore, the maximum is attained at q̄ = S

R
, and all agents

prefer more information when they have no bargaining power. The case with θ = 1 is as in

the text. Finally, the derivative is uniformly decreasing as θ rises through (0, 1) which implies

that q̄ decreases strictly.

We leave aside the case with bargaining under private information as it is substantially

more di�cult.

9.2 Proof of Proposition 3.1

Proof. Take any q and associated message m(q). If p(m(q)) > E(q|m(q))R then all early

investors would sell their shares at date 1 while there are no buyers. If, on the other hand,

S < p(m(q)) < E(q|m(q))R then only early investors who need to consume early sell their

projects. In that case, all late investors who need to consume at date 2 buy as many projects

as they can a�ord, namely A
p(m(q)

so that demand equals supply if and only if

π
A

p(m(q);π,A)
= π ⇐⇒ p(m(q);π,A) = A.

Finally, if E(q|m(q))R ≤ S then the optimal strategy for any project shareholder is to scrap

it. Therefore we must have p(m(q)) = S so that all agents are indi�erent between buying or

selling project shares.

9.3 Proof of Proposition 4.1

Proof. To ease the exposition in the context of this proof, we will dispense with all �F−essentially�
quali�ers. Statements we make below about various subsets of project quality levels are un-

derstood to apply except possibly on sets of F -measure zero.

We will �rst characterize the solution under the assumption that the messages must be

deterministic but will then argue that this assumption can be dropped without changing

the solution. When the message function is deterministic, information takes the form of a

partition of the interval (namely the range of the inverse of the message function) and we can

assume that for all possible q the message is a subset m(q) of [0, 1] that contains q itself.

Consider any solution to the early investors' information design problem (i.e. consider

any optimal message function.) Let H be the union of messages m ⊂ [0, 1] that induce late
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consumers to hold their shares with probability one, while S is the complement set, i.e. the

union of messages that induce scrapping with strictly positive probability. The expected

payo� for early investors given this messaging strategy can be written as:

π

{
F (S)S +

ˆ
{q:m(q)⊂H}

min (E(qR|m(q)), A) dF

}
+ (1− π) {F (S)S + F (H)E(qR|H)}

To understand this expression, note that project shares are scrapped with positive proba-

bility by late consumers only if E(qR|m(q)) ≤ S. Given the same message then, secondary

markets are willing to pay no more than S for shares, so that the expected payo� is the same

whether shares are sold or scrapped by early investors. If the project is continued on the

other hand, late consumers get as payo� the expected date 2 revenue. Early consumers get

min (E(qR|m(q)), A) from secondary markets. But note that

ˆ
{q:m(q)⊂H}

min (E(qR|m(q)), A) dF ≤ min

(ˆ
{q:m(q)⊂H}

E(qR|m(q))dF, F (H)A

)
= F (H) min (E(qR|H), A)

so that merging all messages that lead late consumers to hold into one hold message can only

raise the expected payo� of early investors. Henceforth then we can restrict our search for

the optimal message functions to binary functions: hold or scrap.

Next we show that S is an interval that contains the origin. If this is not the case then

there are two setsM1 andM2 of equal and strictly positive F -mass such that the �rst set is in

H, the second set is in S, and M1 < M2. Moving M2 to H and M1 to S leaves the scrapping

part of the expected payo� unchanged but, since the q's are higher in M2 than in M1, this

strictly raises the payo� conditional on holding. If follows, then, that we must have S = [0, q̄]

and H = (q̄, 1] for some q̄ ∈ [0, 1].

Next assume (yet again by way of contradiction) that q̄ < q̃(A) which implies, in particular,

that q̄ < S
R
. Then secondary markets pay E(qR|H) when the hold message is issued. Indeed,

the de�nition of q̃(A) implies that when q̄ < q̃(A), E(qR|q ≥ q̄) < A so that shares trade at

their expected value in secondary markets when the hold message is issued. It follows that

the ex-ante expected payo� for date-0 agents is

ˆ q̄

0

SdF +

ˆ 1

q̄

E(qR|q ≥ q̄)dF.
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But since the scrapping threshold is such that q̄ < S
R
so that q̄R < S, raising q̄ marginally

would strictly increase the payo�, contradicting the premise that the messaging strategy was

optimal.

These results, taken together, imply that the optimal scrapping threshold maximizes:

V (q̄;A) ≡ π

{ˆ q̄

0

SdF +

ˆ 1

q̄

AdF

}
+ (1− π)

{ˆ q̄

0

SdF +

ˆ 1

q̄

qRdF

}
subject to:

q̄ ≥ q̃(A).

The unconstrained maximizer of V is easily seen to be max
{

S−πA
(1−π)R

, 0
}
. If the constraint

does bind, the solution is q̃(A) instead.

To complete the proof, we now need to argue that the suggested information design remains

optimal even if random messages are allowed. Consider then general message functions h

de�ned from [0, 1] to the set of probability distributions on a given message space M that

includes at least the set of all Borel measurable subsets of [0, 1] so that, in particular, the

optimal deterministic solution remains feasible. We will require that h be such that for any

subset P of M that has a positive mass in the distribution induced by F ◦ h, E(qR|P) is

well de�ned. The same Jensen inequality argument as in the deterministic case implies that

we may restrict our attention to a binary message space, scrap or hold, and we denote each

message as before by S and H, respectively. The complication is that date-0 agents may now

randomize over those two possibilities for a set of q ∈ [0, 1].

Assume, �rst, that at the optimal messaging policy E(qR|H) > A but that there is a

set of positive mass in [0,max
{

S−πA
(1−π)R

, 0
}

) such that the probability that H is emitted given

almost any q in that set is strictly positive. Take a subset of those q's su�ciently small

that E(qR|H) > A continues to hold even if we change the message to scrap for those q's.

Since πA + (1 − π)qR < S by construction for those quality levels, the ex-ante payo� for

date-0 agents rises strictly when we do make that policy change. This implies that q's in

[0,max
{

S−πA
(1−π)R

, 0
}

) must trigger the scrap message with probability one as before. The same

argument implies that if E(qR|H) > A, q's in (max
{

S−πA
(1−π)R

, 0
}
, 1] trigger the hold message

with probability one. If E(qR|H) > A then, the messaging policy is deterministic.

If E(qR|H) < A then early investors expect the same payo� regardless of whether they

turn out to be early or late consumers. In that case, if the scrapping policy is not the full-
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information one, the payo� can be strictly raised by changing the message policy as above,

without perturbing the fact that E(qR|H) < A, a contradiction. In particular, the message

policy is once again deterministic.

Finally, conditional on E(qR|H) = A, it is easy to see that the payo� is at its highest

possible level when messages are deterministic and q̄ = q̃(A).

These three scenarios for E(qR|H) cover all possibilities and, in all cases, the message

function is deterministic. This completes the proof.

9.4 Proof of corollary 4.2

Proof. The �rst item is obvious. As for the second item, note �rst that if A is su�ciently

high, q̃(A) = S
R
, and the optimal threshold is S

R
. As A falls q̃(A) falls below S

R
, the

threshold initially traces q̃(A) an increasing function of A. As A falls further, it starts tracing
S−πA

(1−π)R
instead, a decreasing function, until that function becomes exactly S

R
which occurs at

A = S.

9.5 Proof of corollary 4.4

Proof. Assume that parameters satisfy:

S <

ˆ
max(S,min(qR,A))dF < 1 < A <

ˆ
qRdF.

In other words, the expected payo� from fully informed secondary markets is dominated

by the storage payo�, but it continues to be the case that selling to uninformed secondary

markets dominates storage. Now consider early investors with a high liquidity risk. If π is

high enough, constraining early investors to provide full information will cause them to opt

for storage, thus causing a decline in investing activity since those same agents would choose

to invest if they could opt for no (or, more generally, less) information.

9.6 Proof of proposition 6.1

To make upcoming arguments easier, we will �rst show that the optimal message structure

is a partition of [0, 1] formed of non-overlapping intervals. To that end, we show that the

strategic communication results of Crawford and Sobel (1982, CS) apply to our set-up. CS

write the sender's and receiver's utility asUS(y,m, b) and UR(y,m), respectively, where y is

40



the action taken by the receiver, m is a random variable (our q) and b is a scalar to measure

how di�erent the sender and the receiver are from each other. The sender observes his type,

m and then has to communicate it to the receiver. In our model, the sender is the early

investor in period 0, who devises the message structure. The receiver is the same investor in

period 1, when he has to take the action on the scale of the project. That is, we can de�ne

US(y, q, π) = πmin {max[qR(y, q), S];A}+ (1− π)UR(y, q)

and

UR(y, q) = max [qR(y, q), S]

Notice that π plays the role of b in CS. One di�erence is that our sender does not observe q.

But this does not matter since he's not the one taking the action y. Notice we have

US(y, q, π) = πmin
{
UR(y, q);A

}
+ (1− π)UR(y, q)

Given π and q, we assume that there is a unique maximum y for S and R, and we assume a

sorting condition ∂2qR(y,q)
∂y∂q

> 0 so that our payo� functions satisfy the assumptions imposed

by CS. They show that the optimal message structure is an interval-partition of [0, 1].

Knowing that the optimal message structure is non-overlapping intervals [0, q1); [q1, q2); ..; [qn, 1]

allows us to use the lower bound of each interval as a su�cient statistics for that interval. We

write q̄i = [qi, qi+1). Therefore, when agents receive message q ∈ [qi, qi+1], we can write the

optimal investment decision as

y(q̄i) = arg max
y
E [qR(y; q) | q ∈ q̄i] ,

Then we write R(q̄i, q) = R(y(q̄i), q) so that the expected payo� at the optimal level of input

given message q̄i is

E [qR(q̄i; q) | q ∈ q̄i] .

We begin with a simple observation:

Remark 9.2. Let π = 1. Then optimally, the message is m(q) = q for all q < q̃ and

m(q) = [q̃, 1] for all q ≥ q̃.

The argument is intuitive: When investors are sure to sell their project, they only care

about its scale to the extent that it increases its value. But whenever the message is such
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that E [qR(q̄i; q) | q ∈ q̄i] > A, investors only sell it for A. So there is no gain in designing

such a message. Instead, investors prefer to bundle all project types above q̃ such that

E [qR([q̃, 1]; q) | q ∈ [q̃, 1]] = A. For all q < q̃, full disclosure increases the value of each

project as they all sell for qR(q; q) < A. We now turn to the case where π < 1.

Lemma 9.3. Suppose π < 1. Then optimally, there is q0 > q̃ and q1 ∈ (q0, 1] such that

the message is m(q) = q for all q < q0 or q ≥ q1 and m(q) = [q0, q1) for all q ∈ [q0, q1).

Furthermore,

E [qR (q̄0; q) | q ∈ q̄0] = A.

Proof. That full information is optimal for q < q̃ follows from the fact that the payo� of the

sender and receiver coincide in that region. Now we concentrate on q0 and we show q0 ≥ q̃.

First, notice that q0 is such that E [qR (q̄0; q) | q ∈ q̄0] ≥ A. By way of contradiction, suppose

q0 satis�es

E [qR (q̄0; q) | q ∈ q̄0] dF (q) < A

It should be clear that q1R (y(q1); q1) > A as otherwise, the receiver and sender's payo� would

coincide on the interval [q0, q1). Hence, q0R(y(q0); q0) < A and the receiver and sender's

payo� coincide in a neighborhood of q0. Therefore, the message is dominated by m̃ such that

m̃(q) = q for all q < q0 + ε and m̃(q) = [q0 + ε, q1) for all q ∈ [q0 + ε, q1) and m̃(q) = m(q) for

all q > q1, where ε is chosen such that

E [qR (q0 + ε; q) | q ∈ q0 + ε] ≤ A.

This contradicts that our original message was optimal. Hence,

E [qR (q̄0; q) | q ∈ q̄0] ≥ A.

Above, we showed that q1 = 1 when π = 1. When π = 0 however, q1 < 1. Indeed in this

case, m(q) = {q} is optimal (i.e. q1 = q0). Hence, by continuity, we necessarily have q1 ≤ 1

whenever π < 1 (and with strict equality for π su�ciently below 1). This implies q0 ≥ q̃.

Hence q0 ≥ q̃ with strict equality for π < 1.

It remains to show that for q > q1 it is optimal to reveal the information. We showed that

E [qR (q̄0; q) | q ∈ q̄0] ≥ A,
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so that q1R(y(q1), q1) > A. Therefore for any q ∈ mi = [qi, qi+1) and qi ≥ q1 we have,

qR (y(q); q) > A, as well as

E [qR (q̄i; q) | q ∈ mi] ≥ A.

Hence, the impatient agent does not lose anything if the information is revealed on that

interval as he gets A in any case, while the patient agent prefers to obtain the informa-

tion as he can choose his action optimally. So any positive interval m above [q0, q1) is

dominated by m(q) = {q}. Finally, we show that E [qR (q̄0; q) | q ∈ q̄0] = A. Suppose

E [qR (q̄0; q) | q ∈ q̄0] > A. Then there is a ε such that the message m̂(q) = [q0, q1 − ε) is

such that E [qR (y(m̂); q) | q ∈ m̂] ≥ A and qR(y(q), q) > A for all q ∈ [q1 − ε, q1]. Then the

original message is dominated by message m̂ where m̂(q) = [q0, q1−ε) for all q in that interval

and m̂(q) = q for all q ∈ [q1 − ε, q1).

9.7 Proof of proposition 6.2

Because the potential supply of secondary market investors is in�nite by assumption, it is

enough to show that for almost each market i, a size Ai of secondary markets exists such that

given the associated optimal information design, the expected rents for entrants are exactly

ci. This, we will argue, leads a �xed point problem on Ai which satis�es standard conditions

hence has at least one solution. This will establish existence.

To begin the loop then, start from a guess for Ai. The analysis of the one-market case

we have carried out in this paper implies that only one optimal design policy exists given

this size of secondary markets, and that this policy is fully characterized by a threshold q̄i

below which the project is scrapped. Furthermore, the mapping from Ai to q̄i is continuous

(and, incidentally, fully characterized in proposition 4.1.) This, in turn, implies a continuous

mapping from Ai to expected rents. Either that mapping contains ci in its image, in which

case an equilibrium with active secondary markets exists, or the mapping does not achieve ci

in which case the only equilibrium is one where Ai = 0 and full information prevails.

At any equilibrium where secondary markets are in fact active, there must be a probability

that cash-in-the market pricing must prevail. Indeed, otherwise, rents are zero and entrants

cannot recovery their entry costs. This establishes that cash-in-the-market pricing in any

market where entry costs are strictly positive and completes the proof.
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9.8 Constrained e�ciency

Could a social planner propose a di�erent information arrangement at date 0 that improves

the lot of agents alive at that date and implement that arrangement via carefully designed

sets of transfers across agents? The answer turns out to be no as long as the planner cannot

exclude agents from entering into side-trades and must abide by the resulting participation

constraints.

To see this, consider a social planner who seeks to maximize the ex-ante welfare of early

investors. We assume throughout that parameters are such that the planner is better o�

investing all date 0 resources in the risky project. Once a message function m is set and given

a speci�c message m̄ = m(q) for some q ∈ [0, 1], the planner chooses the consumption of early

investors if they turn out to be early consumers, cE1 (m̄), the consumption of late investors

who are early consumers, cL1 (m̄), the expected consumption of early investors who turn out

to be late consumers, cE2 (m̄), and the expected consumption of late investors who are late

consumers, cL2 (m̄). The planner also chooses whether or not to scrap the project given m̄. We

will write x(m̄) = 1 if the project is scrapped and x(m̄) = 0 otherwise. Finally, the planner

must choose a quantity k(m̄) ≥ 0 of resources to store at date 1. These choices must �rst be

resource feasible at date 1, for all possible messages m̄:

πcE1 (m̄) + (1− π)cL1 (m̄) + k(m̄) ≤ A+ x(m̄)S. (9.4)

Indeed, the only resources available for consumption at date 1 are the endowment of late

investors and the proceeds from scrapping the project. Likewise, the expected payo�s for late

consumers given m̄ must be feasible:

(1− π)cE2 (m̄) + πcL2 (m̄) = (1− x(m̄))E(qR|m̄) + k(m̄) (9.5)

Since late investors can always consume their endowment immediately or store it, the plan

must also satisfy the following participation constraints:

cL1 (m̄), cL2 (m̄) ≥ A (9.6)

Finally we require that early investors who are early consumers be willing to participate in

the arrangement upon discovering their consumption type. We assume that types are either

unveri�able or unobservable so that any agent can claim either cE1 (m̄) or cE2 (m̄). Hence, early
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consumers who pretend to be late consumers can always sell claims to cE2 (m̄) to late investors.

An early investor who chooses to sell her individual claims to late investors must o�er at least

the same return as the one o�ered by the planner, namely

r(m̄) ≡ cL2 (m̄)

A
− 1.

Therefore the planner faces the additional constraint that an early investor should not be bet-

ter o� by selling his claim to late consumption rather than taking the proposed consumption

for early consumers:

cE1 (m̄) ≥ cE2 (m̄)

1 + r(m̄)
. (9.7)

Here, a key observation is that while the planner must internalize aggregate resource con-

straint (9.4) in establishing a consumption vector for all agents, individual deviators are not

constrained in that fashion. In particular, since each early investor is small, she would face

unbounded demand for claims to late consumption remunerated at a transformation rate

in�nitesimally higher than the social planner.

Then, given a message function m : [0, 1] 7→ B[0, 1], the planner solves:

SP (m) = max π

ˆ
cE1 (m(q))dF + (1− π)

ˆ
cE2 (m(q))dF

subject to (9.4), (9.5), (9.6) and (9.7) holding for every possible message m(q) emitted at date

1. We will now show that the message strategy which early investors select in the decentralized

environment maximizes SP (m), hence is constrained-e�cient.

Proposition 9.4. The messaging strategy early investors select in the decentralized environ-

ment is constrained-e�cient.

Proof. Given a message function, we will show that the allocation described in section 3

is feasible for the planner and achieves SP (m). Since the planner seeks to maximize the

welfare of early investors and cL1 (m̄) only matters through its e�ect on available resources,

any solution must feature cL1 (m̄) = A for every possible message m̄ emitted at date 1, so that

(9.4) becomes πcE1 (m̄) + k(m̄) ≤ πA + x(m̄)S. Next, if S ≥ E(qR|m̄), setting x(m̄) = 1,

cL1 (m̄) = cL2 (m̄) = A, and cE1 (m̄) = cE2 (m̄) = S, which is the decentralized solution, obviously

solves the social planner's problem. Likewise, if A < S, the presence of late investors is
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irrelevant and the proposition holds trivially.

So assume henceforth that S < E(qR|m̄) and that S < A. In that case x(m̄) = 0 is easily

seen to be optimal which means that (9.4) becomes cE1 (m̄) ≤ A. But this, together with (9.7),

implies

A(1 + r(m̄) ≥ cE2 (m̄)⇐⇒ cL2 (m̄) ≥ cE2 (m̄) for all possible messages m̄.

This inequality is the linchpin of the proof. It says that the fact that early investors can enter

into side trades ends up implying that � even though he does not value their welfare directly

� the planner has to deliver a payo� to late investors who are late consumers that is as high

as that of original stakeholders. If the planner tries to reduce the rate of transformation late

investors receive in the arrangement, individual deviators can o�er them a better deal.

To conclude the proof, observe that (9.4) and (9.5), together with the fact that x(m̄) = 0,

and the fact that cL1 (m̄) = A imply that

(1− π)cE2 (m̄) + πcE1 (m̄) ≤ πA− πcL2 (m̄) + E(qR|m̄). (9.8)

Now we only need to consider two simple subcases. If A > E(qR|m̄) > S, the decentralized

solution calls for a hold for early investors who are late consumers and for a sale of project

shares at price E(qR|m̄) for early investors who are early consumers. Late investors who are

late consumers expect payo� E(qR|m̄) at date 2. That allocation satis�es all of the planner's

constraints and makes the payo� E(qR|m̄) which, given (9.8) and the fact that cL2 (m̄) ≥ A,

is the highest payo� the planner can achieve in this case.

If S < A < E(qR|m̄), the decentralized solution calls once again for a hold and for a sale

of their share at price A for early investors who are early consumers. Late investors who are

late consumers expect payo� E(qR|m̄) at date 2. That allocation is feasible for the planner

and makes (1 − π)cE2 (m̄) + πcE1 (m̄) = (1 − π)E(qR|m̄) + πA. We will show that this payo�

cannot be beat by the planner. Since we must have cE1 (m̄) ≤ A, the only way to beat it is

to have cE2 (m̄) > E(qR|m̄). Since cL2 (m̄) ≥ cE2 (m̄), that would imply cE1 (m̄) < A. But in that

case it feasible to reduce both cL2 (m̄) and cE2 (m̄) by a marginal ε>0, increase cE1 (m̄) by ε
π
,

which changes the objective by −(1 − π)ε + π ε
π
> 0. Hence the decentralized allocation is

optimal in that subcase as well, which completes the proof.

Given any message strategy m, the decentralized allocation we characterize in section 3 gives
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early investors a payo� of exactly SP (m). If follows that date-0 investors always select a

messaging strategym that maximizes SP (m) and, as a result, is constrained-e�cient. Because

early investors can enter into side-trades, the planner must deliver the same consumption to

all late consumers, whether they were early or late investors. Hence, although the planner

does not value the welfare of late investors, they still receive consumption when they consume

late, and that consumption must be higher than what they would obtain from storing their

endowment. It follows that the marginal return to raising cE2 (m(q)) ≥ A is below the implied

resource cost. On the other hand, while the marginal return to raising early consumption

cE1 (m(q)) equals its marginal resource cost, early consumption cannot be higher than the

available resources A. At any optimum therefore, if A is relatively low � i.e. when S < A <

E(qR|m) � then the planner would like but cannot increase the early consumption of early

investors beyond A, and so cE1 (m(q)) = A. If A is high � i.e. when A > E(qR|m) > S �

then the planner can shift consumption towards early consumers until the constraint on late

consumption binds, so that cE2 (m(q)) = A. But this is exactly what the decentralized solution

delivers, and the result follows.

9.9 Proof of remark 5.1 and remark 5

Proof. Consider a candidate price schedule p(q) for project shares at date 1 where, in the

context of this proof, the premise is that q is only observed by early investors. We know that

p(q) ≥ S in any equilibrium and for almost all q . If S < p(q) < qR then only early consumers

supply their project shares and, upon observing that demand, potential buyers infer that q

is distributed with strictly positive continuous density over [p(q)
R
, 1] . It follows that demand

for project shares is π A
p(q)

. The only case in which this is an equilibrium, therefore, has

p(q) = A and qR > A . If p(q) > qR then all potential sellers sell, from which buyers infer

that q is distributed with strictly positive continuous density over [0, p(q)]
R

] so that demand is

zero, which can not be an equilibrium. The only equilibrium, then, has p(q) = min(S, qR) if

qR < A and p(q) = A if qR ≥ A exactly as in the full information case.

The argument is the same for remark 5 with E(q|m(q))R playing the role of qR

9.10 Proof of proposition 5.3

Proof. Assume that the (fully but privately informed) manager observes that q < q̄(π) . Then,

since αqR < M , she chooses to scrap, as desired. The converse holds by the exact same logic
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and the compensation scheme, therefore, leads to exactly the desired policy.

9.11 Delegation with moral hazard

The delegation scheme we considered in the text assumes that the manager has no impact on

the project's outcome. Assume instead and more realistically that success requires a certain

level of attention, or e�ort, on the part of the manager. In this section, we show that, counter-

intuitively, opacity about asset quality may lower the cost of inducing managers to expend

the optimal level of e�ort on the project they oversee.

Precisely, we assume the manager can a�ect the quality of the project by exerting an

unobservable e�ort e ∈ [0, 1] before nature draws the quality of the project. If she exerts

e�ort e and nature draws quality q then the probability the project succeeds is e.q ∈ [0, q].

Therefore, we can think of the manager's action as a�ecting the distribution from which

nature draws a level of quality. To make the problem interesting, we assume that e�ort is

costly and the per unit cost of e�ort for the manager is B. Notice that the structure of the

economy is the same as the one we have already studied when e = 1.28

Since the e�ort level is unobservable and unveri�able, agents who observe e.q are unable

to distinguish e from q. Therefore, given e�ort e, the analysis proceeds as before: agents

select a liquidation threshold q̄h and, when if eq < q̄h, then the delegate scraps the project,

while if eq ≥ q̄h then the project is held to maturity. Agents need to design a compensation

scheme such that (1) the delegate chooses to liquidate the project if and only if eq < q̄h,

and (2) the manager chooses to the optimal level of e�ort. Below we show that the unique

compensation scheme that satis�es both requirements belongs in the class of schemes we have

used before: the manager receives a �xed severance payment or, when the project is held to

maturity, a participation in revenues. In particular then, the manager gets paid a positive

amount whenever he has to scrap the project and this gives him an incentive to shirk, since

in that case pay is una�ected by e�ort. Hence, transparency � in the sense of a higher q̄h �

will increase the cost of maintaining the manager's incentives to work. Formally:

Proposition 9.5. With moral hazard, more transparency is costly, as it requires a higher

severance payment and a higher share of the project's revenue to incentivize the manager to

work.

28Assuming that the other agents incur no cost of exerting e�ort, or that the minimum π is high enough
that agents always exert e�orts.
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Proof. Consider �rst the incentives of the manager to exert the right amount of e�ort, given

q̄. Take a payment scheme P (eq, ρ, a) where e is the manager's e�ort, q is the quality of the

project known only to the manager, ρ ∈ {s, f} is the outcome of the project (success or failure)

and a ∈ {S,H} is the interim announcement of the manager (scrap, S or hold, H). Since

the project should be scrapped whenever eq ≤ q̄, the payment cannot be conditioned on the

�nal outcome of the project, success or failure, so that P (eq, ρ, S) = P (eq, S) for all eq ≤ q̄.

Truth-full revelation of eq in the range [0, q̄] implies that P (eq, S) = P (S), as otherwise the

manager would always choose to reveal the quality eq that gives him the highest payo�. In

particular, notice that P (S) does not depend on the e�ort level chosen by the manager.

We now turn to the case where eq > q̄. In this case the project should be kept to maturity,

so that the payo� can depend on the outcome s or f . Now, for any eq > q̄, the manager has

to prefer to say just H than revealing another q′ ∈ [q̄, 1] as otherwise the payment scheme

would not satisfy the requirement that it is optimal that the manager only communicates

scrap or hold, S or H. Hence, the payment scheme has to satisfy for any eq, q′ ∈ [q̄, 1],

eqP (eq, s,H) + (1− eq)P (eq, f,H) = eqP (q′, s,H) + (1− eq)P (q′, f,H),

i.e. whatever q nature draws, the manager is indi�erent between revealing any q′ as long as

it implies H. Therefore, combining the incentive compatibility constraint to reveal eq instead

of any q′ as well as the constraint to reveal q′ instead of eq we obtain

(eq − q′)(P (eq, s,H)− P (q′, s,H)) = (eq − q′)(P (eq, f,H)− P (q′, f,H))

Hence, P (eq, s,H)−P (q′, s,H) = P (eq, f,H)−P (q′, f,H). As it would be more expensive to

compensate the manager more in one case than in another29 we conclude that P (eq, s,H) =

P (q′, s,H) = P (s,H), and P (eq, f,H) = P (q′, f,H) = P (f,H).

Finally, we need to insure that the manager announces S (scrap) for all eq < q̄ and H

(hold) otherwise. That is the payment scheme should satisfy,

eqP (s,H) + (1− eq)P (f,H) ≥ P (S), if eq > q̄,

and

P (S) ≥ eqP (s,H) + (1− eq)P (f,H), if eq < q̄.

29If P (eq, s,H) = P (q′, sH) yields the desired result, then there is no reason to incur the additional cost of
setting P (eq, s,H) > P (q′, sH) .
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Since the payo� function whenH is increasing in eq whenever P (s,H) > P (f,H) and decreas-

ing otherwise, we need to set P (s,H) > P (f,H). Finally, payment is minimized whenever

P (S) = q̄P (s,H) + (1− q̄)P (f,H). (9.9)

We can now derive the incentive constraint on the e�ort level. Given q̄, the manager's

payo� of exerting e�ort e is simply

ˆ q̄/e

0

P (S)dF (q) +

ˆ 1

q̄/e

[eqP (s,H) + (1− eq)P (f,H)] dF (q)−Be

which is convex in e as P (s,H) > P (f,H), that is the marginal payo� is

ˆ 1

q̄/e

q [P (s,H)− P (f,H)] dF (q)−B

which is negative at e = 0 and increasing in e. Hence, the manager will choose either e = 0

or e = 1. In other words, the manager exerts e�ort if and only if

ˆ q̄

0

P (S)dF (q) +

ˆ 1

q̄

[qP (s,H) + (1− q)P (f,H)] dF (q)−B ≥ P (S)

on the left hand side of this incentive constraint is the payo� when e = 1 while on the right-

hand side is the payo� when e = 0. In this case notice that the manager always gets P (S), as

the project is always scrapped. Arranging terms and using (9.9) we can rewrite this incentive

constraint as ˆ 1

q̄

{(q − q̄)P (s,H) + (q̄ − q)P (f,H)} dF (q) ≥ B

As q̄ < q in the range of integration, it is optimal to set P (f,H) = 0 and P (s,H) such that

P (s,H) =
B´

q̄
(q − q̄)dF (q)

(9.10)

Notice that the payment is increasing in q̄. Therefore, more transparency (in the sense of a

higher q̄) is costly, as it requires a higher compensation scheme to incentivize the manager.

When, as in the text, we set P (s,H) = αR for a given α then the manager exerts e�ort
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if and only if ˆ 1

q̄

(q − q̄)dF (q) ≥ B

αR
(9.11)

On the left-hand side is the gains from working, while on the right-hand side is the relative

gains from shirking. Notice that the left-hand side is decreasing in q̄ and there is a pair q̂(α)

and α such that (9.11) is satis�ed for all q̄ ≤ q̂(α). Hence, agents will choose q̄ to maximize

V (q̄; π) ≡
ˆ q̄

0

SdF + ......

ˆ 1

q̄

qRdF − π
ˆ 1

q̄

(qR− A) dF, (9.12)

subject to (9.11) and q̄ ≤ q̂(α). Therefore moral hazard will increase opacity (weakly), as by

decreasing q̄ the agent decreases the region where the manager gets paid αq̄R while exerting

no e�ort.

Notice that the contracting problem bears a strong resemblance to the standard costly

state veri�cation problem of Townsend (1979), with scrapping playing the same role in our

problem as audit does in Townsend's. However, the payment structure is essentially reversed:

it is debt when the manager scraps the project and equity otherwise. This occurs because

outsiders cannot tell whether nature selected a low q or whether the manager shirked.
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