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Abstract

We study e�cient exclusion policies in a canonical credit model that features both

exogenous and strategic default along the equilibrium path. Policies that maximize

welfare in a stationary equilibrium implement exclusion for a �nite and deterministic

number of periods following default. Front-loading exclusion makes the mass of socially

valuable transactions as high as it can be in steady state. Less intuitively, doing so also

maximizes the average welfare of excluded agents in equilibrium conditional on the level

of incentives provided by the threat of exclusion. We argue that these results are robust

to a host of natural variations on our benchmark model.
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1 Introduction

A large literature studies the role of the threat of exclusion from �nancial markets in models

with endogenous default. Somewhat surprisingly, most papers in this literature take the spec-

i�cation of the exclusion policy as given.1 For example, in their seminal work on endogenous

incompleteness, Kehoe and Levine (1993, 2001, 2008) assume for the most part that exclusion

from credit markets is permanent, even though they recognize that other policies could raise

welfare.2 Chatterjee et al. (2006) quantify the e�ects of various bankruptcy designs in a

model where exclusion ends with a positive probability every period. Tertilt et al. (2007)

and Liu and Skrzypacz (2013) assume that agents are excluded for a deterministic number

of periods. Elul and Gottardi (2015) show that partial exclusion � whereby defaulting agents

are only excluded with a certain probability � is generally welfare improving in a model with

moral hazard and endogenous borrower reputation.3

Our goal in this paper is to characterize the optimal shape of exclusion policies in a canon-

ical model of credit with endogenous and exogenous default. Randomly matched investors

and lenders play an ultimatum game over �nancing terms for a risky investment. Financ-

ing contracts feature payment promises from investors to lenders. Investors may fail to pay

lenders either because the project fails or by choice so that our model features both strategic

and non-strategic defaults in equilibrium. As in Kocherlakota and Wallace (1998) or Bethune

et al. (2018), public records make it possible to preserve some information about past pay-

ments which allows for dynamic consequences of default and potentially increases the set

1Three exceptions are Bond and Krishnamurthy (2004), Corbae et al. (2016) and Kirpalani (2018). Bond
and Krishnamurthy (2004) model exclusion as direct constraints on transfers from lenders to investors and
study the optimal shape of those constraints. In a model like ours without savings or endowment, their policy
would imply permanent exclusion. Corbae et al. (2016) propose a model where exclusion from credit markets
arise endogenously as borrowers rebuild their reputation following default. They use their model to quantify
the value of having a good reputation in competitive credit markets. In Kirpalani (2018) intermediaries choose
to ban agents from �nancial markets following default instead of simply stopping trade with them because the
former approach, unlike the latter, prevents agents from contracting with other intermediaries, hence gives
strong truthful revelation incentives.

2In section 7, they show by example that exclusion lotteries can raise welfare. Alvarez and Jerman (2000)
implement the resulting equilibrium allocations in an environment with portfolio constraints and study the
asset pricing properties of the resulting model.

3Gu et al. (2013a,b) use probabilistic exclusion and show that it can generate exotic dynamics. Bethune
et al. (2018) argue that partial exclusion may be optimal due to a pecuniary externality in an environment
where more trade in a particular period tightens borrowing constraints in earlier periods. Zhu (2013) also
�nds that �nite exclusion may be optimal in the dynamic moral hazard model of DeMarzo and Sannikov
(2006). In the context of supporting non-cooperative collusion with private information, Green and Porter
(1984) show that short periods of non-cooperative plays are necessary to maintain cooperation.
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of equilibrium that can be sustained. We consider binary records � investors are either in

good or in bad standing � and show that equilibrium may feature partial or full exclusion

from borrowing following default until investors' records are cleared. Our key result is that,

from a stationary welfare point of view, e�ciently designed public records must implement

exclusion for a �nite but deterministic number of periods. This �harsh but short� punishment

approach has two distinct advantages. First, front-loading punishment makes the mass of

active investors hence the mass of socially valuable transactions as high as it can be. Second

and much less intuitively, this policy maximizes the average welfare of excluded agents in

stationary equilibrium. Maximizing the welfare of the excluded also maximizes the number of

mutually bene�cial transactions in stationary equilibrium so that front-loading punishment

is unambiguously e�cient.

Front-loaded exclusion policies are a reasonable approximation of how default is punished

in practice. In most industrialized nations, one of the primary consequences of credit default

by individuals, �rms, and sovereigns alike is the temporary exclusion from credit markets. On

the domestic side, most countries have regulations that allow credit bureaus to record failure-

to-pay events and sell that information to creditors. Empirical research has shown that the

ability of consumers to borrow is severely impaired by bad records. Bad records, that is, do

lead to the e�ective exclusion of potential borrowers from credit markets. Exclusion, however,

is temporary both in practice and as a result of legal constraints for all defaulting agents,

be they individuals, �rms, or sovereigns. As documented for instance by Elul and Gottardi

(2015), most nations impose a statute of limitation that caps the length of credit records.

Sovereigns, likewise, experience exclusion following default but are typically able to return to

credit markets after a few years.

In the extant literature, making punishment for default as harsh as feasible often raises

welfare. Kehoe and Levine (1993, 2001, 2008) describe a dynamic general equilibrium model

where the threat of exclusion from credit markets is necessary to support lending along the

equilibrium path. In their model, the harsher the exclusion policy, or the higher the con-

sequences of exclusion, the more contracts can typically be supported in equilibrium.4 In a

similar vein, Kocherlakota (1996) considers a dynamic risk-sharing game between two agents

with risky endowments. He shows that a feasible allocation in his model can be supported

as a subgame perfect equilibrium if and only if at every history each agent receives at least

4Krueger and Perry (2005) use this key property to argue that increases in income inequality can lead to
less consumption inequality since the penalty associated with exclusion is higher in environments with high
income uncertainty.
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the utility she would expect in autarky. One interpretation of this result is that optimal

subgame perfect arrangements are supported by the threat of permanent exclusion. In his

environment, this maximal threat makes the set of sustainable contracts as large as it can be,

hence is optimal. Our model does not have this property: extreme punishments are usually

suboptimal. Like borrowers do in practice, our investors default in some cases because they

have no choice, while others choose to default even though they could pay what they owe.

This maps neatly into what applied economists typically classify as strategic and non-strategic

defaults.5 Default rates, therefore, are bounded below. This means that exclusion has to be

�nite in length almost surely for there to be positive trade in any stationary equilibrium.

Even when in�nite exclusion is feasible, it is never e�cient. In fact, as we mentioned above,

e�cient exclusion policies minimize the duration of exclusion � instead of maximizing it �

conditional on the level of punishment needed to deter strategic default.6

Our result resembles standard �ndings in the classical analysis of repeated game with

discounting. Abreu (1988) shows that discounted games can be completely analyzed using

�simple� strategy pro�les which specify a path of preferred actions and punishments for any

deviation from that path. Like in our model, the shape of punishment is independent of

history and, optimally, decreases in harshness through time. In that setting, lowering the

severity of punishment over time is necessary for subgame perfection: �early stages of an

optimal punishment must be more unpleasant than the remainder [...] to deter a player

from cheating when he is already being punished as harshly as possible.� In our case, it

is e�cient to front-load punishment because any early forgiveness must be compensated for

disproportionately in the future.

While the e�cient shape of exclusion policies can be fully characterized, we show that the

optimal length of exclusion depends in ambiguous ways on model parameters. For instance,

we present versions of our model in which more project risk is associated with longer exclusion

while the exact opposite happens in other, equally reasonable versions. Put another way, while

5See e.g. Foote et al. (2008) and Gerardi et al. (2015).
6Elul and Gottardi (2015) �nd that forgiveness can be optimal in a model of borrower reputation. In our

model, eventual forgiveness with probability one must be optimal, for otherwise all agents would asymptot-
ically �nd themselves excluded. This aspect of our model is similar in spirit to a point made by Dubey et.
al (2005) and Quintin (2013) about the optimal intensity of direct default punishment. In both papers, the
set of contracts borrowers and lenders can write is exogenously restricted and, as a result, default is a part of
equilibrium outcomes. In those environments, punishing default more harshly can lower welfare. It can even
lead to higher default rates and, like in our environment, typically leads to fewer transactions. Our paper
focuses on exclusion threats and forgiveness rather than direct punishment, but it does share the feature that
maximizing the punishment via exclusion would lead to eliminating all lending.
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the e�cient shape of exclusion can be characterized with remarkable generality, the e�cient

length of exclusion is highly sensitive to modeling details.

2 The environment without public records

Consider an economy in which time is discrete and in�nite. There is one good that cannot

be stored across periods. A mass one of in�nitely-lived investors are each endowed with a

project but no good. They can activate their project in each period by investing a quantity

k ∈ K of the good at the start of a period where K is the set of feasible scales of operation.

For instance, it may be that K = [k,+∞] in which case k ≥ 0 is a minimal scale of operation.

Or K may be a �nite set, even a singleton, as will be the case in some of the examples we

consider in the sequel.

When it is successful, which occurs with probability π > 0 in each period, the project pays

output Ak at the end of the period where A > 0. With the complementary probability, the

project pays nothing. A law of large numbers holds so that π is also the fraction of projects

that deliver positive output in a given period.

To simplify the exposition, we will �rst assume that investors are risk-neutral and discount

future payo�s at a constant period rate of β ∈ (0, 1). We relax this linearity assumption in

section 5. There we consider an environment with risk-averse investors and traditional risk-

sharing contracts. While this makes notation and derivations more burdensome, our main

results are unchanged.

The economy also contains a mass one of lenders endowed with an amount M > 0 of the

unique good. Lenders consume at the end of the period, have linear preferences, and discount

future �ows at the same rate β as investors. They can store the endowment they receive at

the start of the period for a time-invariant and safe payo� R ∈ (0, A) which exogenously pins

down the opportunity cost of their resources. In addition, each lender is randomly matched

each period with exactly one investor. In any match at date t, lenders have the option to lend

a quantity kt ∈ [0,M ] ∩K of the good to their counterpart, while investors have the option

to make a transfer mt ∈ [0, Akt] to the lender when their project succeeds. Investors make a

take-it-or-leave-it o�er to the lender with whom they are matched. We will consider di�erent

o�er protocols in section 5.1. In this section, we assume that lenders have no information

about past actions by investors. Our upcoming results will consider the role of providing such

information.
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Only investors observe their output realization. Furthermore, commitment on their part

is limited. If they abstain from making a payment when one is due they experience a penalty

τ ≥ 0 drawn at the end of the period from a known distribution F . The default cost τ

captures in simple fashion any remorse or shame defaulting investors experience as well as

the e�ects of exogenous punishments in the spirit of Dubey et al. (2005). One can also think

of τ as the cost associated with hiding or absconding with the project's output. In section

5.2 we will consider the case where default entails not just private costs but also social costs

and the case where lenders also experience a private cost when default occurs.

To simplify the analysis we assume that F is absolutely continuous over a bounded support

[0, τ̄ ]. The fact that ex-post default costs can be non-degenerate allows for equilibrium in which

a strictly interior fraction of agents default for strategic reasons but plays no other role in our

analysis. In fact, we could abstract from direct default costs altogether without any impact

on our main results.7

Absent any dynamic consequences of default, investors of ex-post type τ ≥ 0 repay their

loan when and only when their project is successful and

mt ≤ τ.

Note that payments cannot be made contingent on τ because we assume that it is drawn after

o�ers are made. In section 5.3 we study the case with adverse selection where τ is drawn

before o�ers are made. Payments are contingent on output however but to ease notation we

do not make that dependence explicit since payments are clearly zero when the project fails

so that any positive payment stipulation is de facto contingent on success.

Our environment captures in a simple way the two types of default events that correspond

to the classi�cation used in applied work.8 Strategic default occurs when the project is

successful but, nonetheless, investors choose to experience disutility τ rather than honor their

debt. Non-strategic, exogenous default occurs when the project fails and investors have no

choice but to default. Only investors know why they failed to pay so that other agents cannot

distinguish defaults types from one another.

From the point of view of lenders, the expected payo� on loans to investors exceed storage

7Allowing F to feature jumps (as we do in various examples in section 6) would not change any of our
results but equilibrium may then feature mixed default strategies for positive masses of investors.

8See e.g. Foote et al. (2008).
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returns when:

π(1− F (mt))mt ≥ ktR. (2.1)

Indeed, only the mass 1 − F (mt) of successful investors whose τ is below mt repay. This

is the participation constraint for lenders in any match. As Quintin (2012, 2103) discuss at

length, (1 − F (mt))mt is generally non-monotonic. Furthermore, because F has bounded

support, the right-hand side of the last constraint is bounded by π(1− F (m∗))m∗ where m∗

is a maximizer of (1 − F (m))m. This implies that feasible capital advances are bounded in

any match. Investors select mt and kt to solve

(P1) max
kt,mt

π

(
Akt −

ˆ mt

0

τdF +

ˆ τ̄

mt

mtdF

)
subject to:

kt ∈ K,

kt ≤ M,

mt ≤ Akt,

ktR ≤ π(1− F (mt))mt.

The feasible set is empty when no capital level compatible with payment feasibility and the

lenders' participation constraint is in K. In all other cases a solution to this problem always

exists since the feasible set is compact while the investors' objective function is continuous.

While several solutions may exist, the �nal constraint (condition 2.1, that is) must bind at

any solution. Indeed, were it not the case, it would be feasible to either raise kt or lower

mt until the constraint does bind which would strictly raise the objective. It follows that

solutions are fully summarized by mt since the associated capital use is implied by condition

2.1. Furthermore, whenever a project is activated, we must have mt > 0 since condition 2.1

could not hold otherwise for any kt > 0. So we will write mt = 0 when no contract is feasible.

Since we have yet to introduce a public record technology there are no meaningful dynamics

in this version of our economy. It is essentially a special case of the two-date model Dubey et

al. (2005) describe in which all default punishment is a direct and exogenous utility penalty.

Not surprisingly then, existence holds in our model in as much generality as it does in theirs.

Speci�cally, every period, investors propose to lenders a solution to problem (P1) when one

exists. When no solution exists, lenders simply store their endowments each period while
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investors do not activate their project.

3 Public records and exclusion

Assume now that partial information about past actions by investors is available in the form of

an investor-speci�c public signal s ∈ {B,G} . For reasons that will soon become transparent,

we will think of investors whose status at the start of a period is s = G as investors in good

standing while investors whose s = B are in bad standing. Consider �rst investors who begin

a period in good standing. If they enter into a loan contract with the lender with whom they

are matched that features mt > 0 and fail to pay either by choice or because the project

failed, their status becomes s = B at the end of the period. Otherwise, they remain in good

standing. If, on the other hand, investors enter a period in bad standing, the evolution of their

public status is governed by a sequence {φs}+∞
s=0 of forgiveness probabilities. With probability

φ0 his status is immediately � before they become matched � adjusted to s = G. After this

�rst draw, investors who have been in bad standing for n periods are forgiven with probability

φn.

In other words, for all n, φn is the hazard rate into return to good standing. The probability

that an investor is going to be in bad standing for exactly n periods following default is

φn+1

n∏
s=0

(1− φs).

By the same logic,
+∞∏
s=0

(1− φs)

is the probability that investors in bad standing will never be forgiven.

This general formulation encompasses all the speci�cations employed in the existing litera-

ture on endogenous default. Immediate forgiveness (φ0 = 1) yields the economy we described

in the previous section, a special case of the environment described by Dubey et al. (2005).

At the opposite extreme, zero forgiveness (φs = 0 for all s) � which results in permanent

exclusion � is the case studied in Kehoe and Levine (1993). Chatterjee et al. (2006) specify

constant forgiveness rates, i.e. φs = φ for all s. The one-time forgiveness lottery of Elul

and Gottardi (2014) or section 7 in Kehoe and Levine (1993) corresponds to the case where

φ0 > 0 but φs = 0 for all s > 0. Setting φs ∈ {0, 1} for all s gives exclusion for a deterministic
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number of periods as in Tertilt et al. (2007) or Liu and Skrzypacz (2013). Our formulation

also allows in principle for much more complex forgiveness policies.9

Investors can now be in di�erent states at the start of a given period. Some investors are

in good standing. Among investors who are not in good standing, we also need to record the

number of periods for which they have been in bad standing since, in general, the forgiveness

probability may depend on that length of time. Investor status and the number of periods for

which investors have been in bad standing are public information. This makes our environment

similar to the incomplete record-keeping model of Kocherlakota and Wallace (1998) and, like

them, we consider symmetric and stationary equilibrium (SSE's) given a forgiveness policy.

In each match, investors and lenders play an ultimatum game in which investors propose a

contract (k,m) and lenders accept or reject it. Rejections lead to zero payo� for investors

while lenders store their endowment and earn MR.

Equilibria specify actions for investors and lenders in any match for every possible action

of their counterpart, not simply actions that are played along the equilibrium path. In

particular, lenders announce a complete acceptance policy. Actions may only depend on the

investors' status of record, namely whether or not they are in good standing and, for investors

who are in bad standing, how many periods they have been in that state. The stationarity

requirement is that actions may not depend on the date,10 while the symmetry requirement

is that counterparts must treat all possible matches equally, so that actions cannot depend

on an investor's identity.

It is well known that an environment like ours may produce many types of equilibria, even

after restricting attention to stationary and symmetric strategies. We will consider Markov

perfect equilibria in which investors in good standing o�er lenders a contract (kG,mG) while

investors in bad standing o�er lenders a potentially di�erent contract (kB,mB). Towards

constructing such equilibrium, observe �rst that with any quadruple (kB,mB, kG,mG) of

actions are associated continuation values V G and V B(n) for investors in each possible state.

Taking investors in good standing �rst,

9We are making the implicit assumption that investors are all treated equally once they default. This
is without loss of generality as long as the default shock is independent across periods. But if types are
persistent, welfare may be improved by making punishment depend on the credit history of investors. See
section 5.3.

10Our type of environments could support time-dependent strategies and time-dependent forgiveness poli-
cies. One could imagine for instance periods of limited lending and limited punishment alternating with
periods of high lending and high punishment, which would generate lending cycles in the sense of Gu et al.
(2013b) or Bethune, Hu, and Rocheteau (2018). Focusing on SSEs is a limitation in the sense that it rules
out such cycles.
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V G = (1− π)βV B(0) + πEτ max
{
AkG −mG + βV G, AkG − τ + βV B(0)

}
(3.1)

while for investors who have been in bad standing for n ≥ 0 periods,

V B(n) = φnV
G + (1− φn)

[
πEmax {AkB −mB, AkB − τ}+ βV B(n+ 1)

]
. (3.2)

To understand this second expression, recall that investors in bad standing improve their

standing if and only if they are forgiven. While they may receive a loan while in bad standing,

whether or not they repay this loan has no bearing on their standing. In section 5.7, we will

brie�y discuss the case where investors in bad standing may improve their standing by entering

into a loan and repaying it. Importantly,

Lemma 3.1. Continuation values V G and V B(n) are uniquely de�ned for all n for any set

of contract proposals (kB,mB, kG,mG) and given a forgiveness policy {φs}+∞
s=0.

Proof. Given (kB,mB, kG,mG), a guess for V B(0) implies a unique value for V G by equation

3.1. In turn, equation 3.2 implies a unique value of V B(0). To see this, relying on a traditional

value function iteration approach, posit V B(N) = 0 for a large N. Backwards induction

then gives a unique approximation for V B(n) for n ≤ N , including for V B(0). Because β ∈
(0, 1) this approximation for V B(0) converges to a unique value as N gets large. This yields

a mapping on the real line which takes any guess for V B(0) into a new guess. Standard

arguments show that this mapping de�nes an operator on the real line that satis�es Blackwell's

su�cient conditions for a contraction. In particular, it has a unique �xed point. Since V B(0)

is uniquely de�ned, so are V G and, in turn, V B(n) for all n.

Turning now to individual rationality, investors choose to pay if the project succeeds and

once they discover their default cost τ if

−mG + βV G ≥ −τ + βV B(0)⇐⇒ mG ≤ τ + β
[
V G − V B(0)

]
(3.3)

so that it is incentive feasible for lenders to accept a proposal (kG,mG) in a match if and only

if

π
(
1− F

(
mG − β

[
V G − V B(0)

]))
mG ≥ kGR. (3.4)
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Importantly, since no information is recorded on lenders' actions in a match outside of the

public record, future o�ers cannot be made conditional on lenders' current actions, so that

incentive feasibility for lenders does not involve any dynamic consequences of their acceptance

actions. Investors in bad standing choose to repay ex-post if and only if mB < τ so that it is

individually rational for lenders to accept an o�er from bad investors if and only if condition

2.1 holds, i.e.:

kBR ≤ π(1− F (mB))mB. (3.5)

In addition, since default has no dynamic implications for investors in bad standing, their

o�ers solve (P1) in any SSE. More formally, a SSE is a quadruple (kB,mB, kG,mG), the

associated policy functions V G and V B(n), and stationary acceptance policies for lenders for

every possible match and every possible o�er, such that:

1. The acceptance policy is optimal for lenders for every possible o�er in any match. That

is, o�ers are accepted if and only if they satisfy (3.3) when made by investors in good

standing and (3.4) when made by investors in bad standing;

2. Proposal (kB,mB) solves problem (P1);

3. Proposal (kG,mG) maximize

π

(
Ak −

ˆ m−β[V G−V B(0)]

0

τdF +

ˆ τ̄

m−β[V G−V B(0)]

mdF

)
+ (1− π)βV B(0)

subject to:

k ∈ K,

k ≤ M,

m ≤ Ak,

π
(
1− F

(
m− β

[
V G − V B(0)

]))
m ≥ kR.

All equilibrium have to be such that (kB,mB) solves (P1) along the equilibrium path. Having

found one such solution, setting (kB,mB) = (kG,mG) gives a �rst SSE. Indeed, in that case,

V B(n) = V G for all n and the participation constraint is exactly the same for investors in good

standing and investors in bad standing. In general however, there are many more equilibrium,

as we will soon establish.
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Any SSE with mG > 0 features a fraction δD of investors in good standing who fail to pay

where

δD = (1− π) + πF
(
mG − β

[
V G − V B(0)

])
> 0.

Together with the exogenous forgiveness process, this de�nes a Markov chain over investor

standing. If a stationary equilibrium exists with a constant mass of investors in each standing,

the mass µG of investors who enter a period in good standing (before forgiveness draws are

made) must satisfy:

µG =

[
µG +

+∞∑
n=0

µB(n)φn

]
(1− δD) (3.6)

where µB(n) is the mass of investors who enter a particular period in bad standing and have

been in bad standing for n periods, for all n ≥ 0. In words, to enter a period in good standing

involves being in good standing in the previous period, upon entry or through forgiveness,

and not defaulting. As for the mass of investors in bad standing at the start of the period

µB(0) =

[
µG +

+∞∑
n=0

µB(n)φn

]
δD

while, for n > 0,

µB(n) = µB(n− 1)(1− φn−1).

The following result tells us which forgiveness policies can support stationary equilibrium

with a positive mass of investors in good standing.

Proposition 3.2. A stationary equilibrium with µG > 0 exists if only if

+∞∑
n=0

Πn
s=0(1− φn) < +∞. (3.7)

Proof. Assume by way of contradiction that
∑+∞

n=0 Πn
s=0(1−φn) = +∞ but that a SSE exists

with µG > 0. For all n ≥ 1,

µB(n) ≥ µB(0)Πn−1
s=0 (1− φn).

But

µB(0) ≥ µGδD
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since the mass of newly excluded investors includes those who where not excluded at the start

of the previous period and defaulted. (As we mentioned above, µB(0) also includes borrowers

who were forgiven in the previous period and defaulted immediately, but we do not need to

count them precisely in the context of this proof.) It follows from these inequalities that:

+∞∑
n=0

µB(n) ≥ µGδD
+∞∑
n=0

Πn−1
s=0 (1− φn) = +∞.

But at any stationary distribution we need

µG +
+∞∑
n=0

µB(n) = 1.

This contradiction establishes necessity. As for su�ciency, we have already argued that setting

(kG,mG) = (kB,mB) where (kB,mB) solves problem (P1) is a SSE. If (kB,mB) = (0, 0) then

no lending ever takes place along the equilibrium path at that SSE and µG = 1 is invariant as

needed. If (kB,mB) > (0, 0) then as long as condition (3.7) holds the countable state Markov

Chain is positive recurrent (see Tierney, 1994), hence has a unique invariant distribution, and

that distribution must feature µG > 0.

To understand this result, assume for instance that

Π+∞
n=0(1− φn) ∈ (0, 1),

among other ways in which we may have

+∞∑
n=0

Πn
s=0(1− φn) = +∞.

Then a strictly positive fraction of investors who are in bad standing never return to good

standing. This implies that from any initial distribution, the countable state space Markov

chain that governs investor standing implies a sequence of distributions such that µG converges

to zero. In particular, the Markov chain admits no invariant distribution. Hence, the only

forgiveness policies that are compatible with strictly positive masses of agents in good standing

in equilibrium are the ones for which investors in bad standing are eventually forgiven with

probability one.
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In the next section, we will concentrate our attention on SSEs in which agents in bad

standing are excluded from loan markets. For such equilibrium to exist, it is necessary

that parameters be such that (kB,mB) = (0, 0) be the only solution to (P1). In that case,

investors in bad standing have to be excluded from borrowing until they are forgiven and

(kB,mB, kG,mG) = (0, 0, 0, 0) is one SSE. It is the only SSE when φ0 = 1 so that investors

are immediately forgiven following default. But whenever φ0 < 1, SSEs with kG > 0 and, for

that matter, µG > 0 may exist as we will now show by example.

Example 3.3. Assume temporarily that φn = 0 for all n so that exclusion is permanent with

probability one. This violates condition 3.7 which simply means that for now all investors are

asymptotically excluded but this is not incompatible with the existence of a SSE. By the end

of the construction, the exclusion policy will satisfy condition 3.7.

Also specify K = [k,+∞] for the feasible capital set where k > 0 is a minimal scale of

operation. Denote by m∗ the value that maximizes π (1− F (m))m and assume that

π (1− F (m∗))m∗ = kR− ε

where ε > 0. In that case, (kB,mB) = (0, 0) is the only solution to (P1), which implies that

V B(0) = 0 at any SSE. Assume however that

πm∗ ≥ kR

so that a solution to (P1) would exist if default were not an option. So to sustain an SSE

with (kB,mB) > (0, 0) we simply need exclusion to be su�ciently dissuasive.

To that end, de�ne V G(m∗) ≥ 0 to be the only solution to 3.1 given V B(0) = 0 when

(kG,mG) = (k,m∗). Note that V G(m∗) ≥ π (Ak −m∗) which can be made as large as one

wants by making A large. In particular, we may choose A large enough so that

π
(
1− F

(
m∗ − βV G(m∗)

))
m∗ ≥ kR.

But this implies that the unique (kG,mG) that satis�es condition 2 of the de�nition of a SSE

is such that kG > 0, as needed.

To complete the construction, we need to relax the assumption that φn = 0 for all n so

as to have built an SSE in which µG > 0 at the invariant distribution. Consider the class of

forgiveness technologies where φn = 0 for all n < N while φN = 1. As N grows large, V B(0)
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converges towards zero while V G(m∗) grows to a value that exceeds π (Ak −m∗) . It follows
by continuity that

π
(
1− F

(
m∗ − β

(
V G(m∗)− V B(0)

)))
m∗ ≥ kR

so that, once again, (kG,mG) > (0, 0) at any SSE, and this SSE is now such that µG > 0.

We conclude this section with a key observation that underlies the notion of e�ciency we

adopt in this paper and contains the intuition for our main results.

Lemma 3.4. Assume that (kG,mG, kB,mB) is a SSE given forgiveness policy {φn}+∞
n=0. Then

(kG,mG, kB,mB) is also a SSE for any other forgiveness policy {φ′n}
+∞
n=0 that implies the same

V B(0).

Proof. Given (kG,mG, kB,mB), knowing V B(0) implies V G by condition 3.1. Since (kG,mG, kB,mB)

is a SSE under the original policy, (kG,mG, kB,mB) remains an SSE under the new policy.

Our e�ciency arguments rely heavily on this fact. Given an SSE (kG,mG, kB,mB) under

a particular forgiveness policy that implies a particular value of default V B(0), a di�erent

forgiveness policy that delivers the same V B(0) supports the same SSE. E�cient policies

then, at a minimum, should deliver the highest average welfare among forgiveness policies

that leave V B(0) unchanged. This minimal requirement turns out to sharply restrict the

shape of e�cient forgiveness policies, as we explain in the next section. The simplicity of

the argument also means that our �ndings are robust to many variations of our model of

borrowing and lending. Once V G and V B(0) are known our arguments apply regardless of

the economic model that underlies those value functions. We will discuss several of these

variations in section 5.

4 Optimal exclusion in stationary equilibrium

To deal with a simple case �rst we �rst restrict our attention on SSEs such that investors

are excluded from any lending while in bad standing. This will enable us to refer to the

forgiveness policy as an exclusion policy. We showed in the previous section that parameters

can in fact be restricted so that investors in bad standing do not invest at all while in bad
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standing so that they are e�ectively excluded following default until forgiven. In the next

section, we will fully generalize our results to the case where (kB,mB) > (0, 0).

When (kB,mB) = (0, 0), we obtain via condition 3.2 and given a forgiveness policy {φn}+∞
n=0

that

V B(0) = φ0V
G + (1− φ0)φ1βV

G + (1− φ0)(1− φ1)φ2β
2V G + . . . < V G (4.1)

since

πEmax {AkB −mB, AkB − τ} = 0

in that case.

We call a forgiveness policy {φn}+∞
n=0 e�cient if it supports a SSE with invariant distribution{

µG, µB
}
and continuation utility

{
V G, V B

}
such that no other policy{φ′n}

+∞
n=0 supports the

same SSE with invariant distribution
{
µGo , µ

B
o

}
and continuation utility

{
V G
o , V

B
o

}
with

µGV G +
+∞∑
s=0

µB(s)V B(s) < µGo V
G
o +

+∞∑
s=0

µBo (s)V B
o (s).

As we mentioned above, the lenders' participation constraint must bind in any match so that

their welfare is MR
β

in any SSE. Since their welfare is constant across SSEs and forgiveness

policies, it cannot have any bearing on e�ciency rankings. In section 5.1 we will study

equilibria in which lenders earn positive surplus and the e�ciency criterion must be amended.

The welfare functional we state takes full account of default costs since they are part of the

computation of value functions. In section 5.2 we will consider the case where default entails

a social cost as well as a private cost.

We further restrict our attention to policies such that

+∞∑
n=0

Πn
s=0(1− φn) < +∞

so that the stationary objective function is well de�ned. As we have shown, absent this

condition our economy must drift towards a distribution of types with µG = 0.

Ours is a minimal e�ciency requirement in the sense that holding loan terms the same,

an e�cient policy maximizes the average welfare of agents in steady state.11 Minimal a

requirement as it may seem, it is enough to greatly restrict the set of forgiveness policies.

11Appendix 9.3 studies a di�erent notion of e�ciency based on welfare as of date 0 rather than stationary
welfare.
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Theorem 4.1. E�cient forgiveness policy {φs}+∞
s=0 must be such that for some s∗,

1. φs = 0 for all s < s∗;

2. φs∗ ∈ (0, 1];

3. φs∗+1 = 1 and φs ∈ [0, 1] for all s > s∗ + 1.

E�cient forgiveness policies bring investors in bad standing back into lending markets as

fast as possible given that a certain level of punishment needs to be imposed in equilibrium.

This is optimal because doing so has two distinct virtues. First, it maximizes the stationary

mass of investors in good standing, which is positive for welfare since V B(n) < V G for all n.

Second and much less intuitively, it also maximizes the average welfare of investors in bad

standing. The second feature stems from the fact that if the forgiveness policy is lenient early

in the sense that it forgives some of the investors who defaulted right away, it must reestablish

incentives by increasing punishment on investors that have been in bad standing for longer

periods of time. Discounting implies that this punishment more than o�sets the gains of the

investors released from exclusion.

Note that the optimal exclusion policy involves a non-degenerate forgiveness lottery in at

most one period. In the natural continuous time limit of our environment, the optimal policy

would not require this randomization device. An equivalent interpretation of φs∗ ∈ (0, 1] is

that investors are only allowed to operate their technology for part of transition period s∗. In

particular, no randomization device is necessary to implement the optimal exclusion policy.

Towards proving our main theorem, consider any SSE (kG,mG, kB,mB) supported by a

forgiveness policy that implies a certain V B(0). By lemma 3.4, for the associated policy to be

e�cient, it must solve:

max
{φs}+∞s=0

µGV G +
∑+∞

s=0 µ
B(s)V B(s)

subject to

V B(0) = φ0V
G + (1− φ0)φ1βV

G + (1− φ0)(1− φ1)φ2β
2V G + . . . (4.2)

We will show that any solution to the above problem satis�es the conditions listed in theorem
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4.1. Observe that

µGV G +
+∞∑
s=0

µB(s)V B(s) = V G +
+∞∑
s=0

µB(s)
(
V B(s)− V G

)
since

µG +
+∞∑
s=0

µB(s) = 1,

so that we can simply maximize

+∞∑
s=0

µB(s)
(
V B(s)− V G

)
subject to 4.2. Since for all s > 0,

µB(s) = µB(0)
s−1∏
i=0

(1− φi)

this objective can be re-written as

µB(0)
{[
V B(0)− V G

]
+ (1− φ0)

[
V B(1)− V G

]
+ (1− φ0)(1− φ1)

[
V B(2)− V G

]
+ . . .

}
To proceed we consider �rst the problem of maximizing the bracketed expression

[
V B(0)− V G

]
+ (1− φ0)

[
V B(1)− V G

]
+ (1− φ0)(1− φ1)

[
V B(2)− V G

]
+ . . .

subject to 4.2. In other words, we consider the problem of maximizing the average welfare of

excluded investors in stationary equilibrium. Using expression (3.2), the resulting objective

is

P = −(1− φ0)
[
V G − βV B(1)

]
− (1− φ0)(1− φ1)

[
V G − βV B(2)

]
− . . .

= −V G[(1− φ0) + (1− φ0)(1− φ1) + (1− φ0)(1− φ1)(1− φ2) + . . .]

+ (1− φ0)βV B(1) + (1− φ0)(1− φ1)βV B(2) + (1− φ0)(1− φ1)(1− φ2)βV B(3) + . . .

In the appendix we show that the �nal part of the expression for P (the last line in the string
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of equations above) is constant over the constraint set de�ned by (4.2), as long as

+∞∑
n=0

Πn
s=0(1− φn) < +∞.

While the detailed argument for why this is true is quite involved, the intuition is simple. The

�nal part of the expression is proportional to the utility investors expect following default, a

level which is pinned down by the constraint. Given this fact, it follows that maximizing P
over the constraint set amounts to minimizing

ζ ≡ (1− φ0) + (1− φ0)(1− φ1) + (1− φ0)(1− φ1)(1− φ2) + . . .

subject to the constraint that the right level of punishment must be imposed.

We show in the appendix that this is done by making early φ's zero until the constraint

(4.2) is met. In other words, maximizing the average welfare of excluded investors given that

punishment (4.2) must be in�icted on investors who just defaulted is optimally done by fully

excluding them until they have su�ered precisely the punishment equilibrium requires. Then

investors return to the non-excluded fold with probability one. The intuition for this result is

as follows. One could even out forgiveness chances across excluded investors of each type. For

instance, a candidate policy could feature the unique constant φ that meets the punishment

constraint. This would give defaulting investors a chance to avoid exclusion altogether, for

one potential bene�t. But then one needs to increase punishment (reduce forgiveness odds)

in the future to preserve V B(0). Because of time-discounting (β < 1) the increase in future

punishment more than undoes the bene�ts of reducing the severity of punishment in early

periods. This intuition is formalized in the variational argument developed in the appendix.

The bottom line is that maximizing the average welfare of the excluded is the same as

minimizing ζ. But ζ admits a convenient interpretation for our purposes: it is monotonically

related to the mass of excluded investors in any period. Indeed, recall that µB(0) is the mass

of agents that just became excluded at the start of a given period. In turn,

µB(1) = (1− φ0)µB(0),

while

µB(2) = (1− φ0)(1− φ1)µB(0)
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and so on and so forth. It follows that the total mass of excluded may be written as

+∞∑
s=0

µB(s) = µB(0)(1 + ζ).

In words, minimizing ζ corresponds to minimizing the mass of investors who are excluded in

any period. To proceed, the following expression for µE(0) will be useful.

Lemma 4.2. In any stationary equilibrium with positive investment,

µB(0) = µG × δD

1− δD

where δD is the time-invariant default rate on loans.

Proof. In any stationary equilibrium,

µB(0) =

[
µG +

+∞∑
n=0

µB(n)φn

]
δD. (4.3)

To understand this expression for µB(0), note that there are two ways to enter default from

one period to the next. First, non-excluded agents may default. Second, excluded agent can

be forgiven at the start of the previous period but then default immediately. But

+∞∑
n=0

µB(n)φn = µB(0) [φ0 + (1− φ0)φ1 + (1− φ0)(1− φ1)φ2 + . . .] = µB(0), (4.4)

where we have used the fact that the bracketed expression adds to one if and only if

+∞∑
n=0

Πn
s=0(1− φn) < +∞.

This should once again be intuitive. The mass of agents who exit exclusion must equal the

mass of agents who enter exclusion in any stationary equilibrium. Combining expressions

(4.4) and (4.3) gives the lemma.

Since the sum of all types is one, we need

µG + µB(0)(1 + ζ) = 1
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or, given the lemma we just established,

µG + µG(1 + ζ)
δD

1− δD
= 1⇐⇒ µG =

1

1 + δD

1−δD (1 + ζ)
.

In particular, maximizing the average welfare of the excluded � i.e. minimizing ζ � also

maximizes the mass of active investors and hence the volume of transactions in stationary

equilibrium. Unambiguously then, a policy of full but �nite exclusion maximizes stationary

equilibrium welfare. Theorem 4.1 � our main result � collects these results.

5 Extensions

This section discusses the robustness of our main theorem to natural variations on our bench-

mark environment. Appendix 9.3 studies a more complex extension in which e�ciency is

de�ned via date zero welfare rather than stationary welfare.

5.1 Lender control

Assume that lenders initiate o�ers in matches instead of investors. Matched investors and

lenders continue to play an ultimatum game. Lenders now solve a di�erent version of problem

(P1):

(P1′) max
k,m

π(1− F (m))m− kR

subject to

k ∈ K,

k ≤ M,

m ≤ Akt

π

(
Ak −

ˆ m

0

τdF +

ˆ τ̄

m

mdF

)
≥ 0.

so that the objective function and the participation constraint are e�ectively �ipped. A key

feature of this altered problem is that the investors' participation constraint cannot bind.

Indeed, ˆ m

0

τdF +

ˆ τ̄

m

mdF ≤ m
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so that

m ≤ Ak

implies that

π

(
Ak −

ˆ m

0

τdF +

ˆ τ̄

m

mdF

)
≥ 0.

Further, standard duality results imply that a solution to (P1′) exists if and only if a solution

to (P1) does. In particular, if parameters are such that investors are excluded in the previous

version of our model, the same is true in this version. On the other hand, if a positive solution

to (P1') exist, it must leave positive surplus on the table for investors, strictly positive surplus

in fact when F has full support on [0, τ̄ ]. As for investors in good standing, equilibrium now

requires that the lender's proposal (kG,mG) in a match with an investor in good standing

maximizes

π
(
1− F

(
m− β

[
V G − V B(0)

]))
m− kR

subject to:

k ∈ K,

k ≤ M,

m ≤ Ak,

π

(
Ak −

ˆ m−β[V G−V B(0)]

0

τdF +

ˆ τ̄

m−β[V G−V B(0)]

mdF

)
≥ 0.

Once again, the participation constraint cannot bind at any solution. Now, letting V L(B)

and V L(G) denote the lender's surplus in matches with investors in bad and good standing,

respectively, stationary welfare becomes:

µGV G +
+∞∑
s=0

µB(s)V B(s) + µGV L(G) +
+∞∑
s=0

µB(s)V L(B)

In section 2.1, we showed that front-loading punishment maximizes the average welfare of

the investors in bad standing but also maximizes µG. Therefore, as long as V L(B) ≤ V L(G),

which holds for instance in the important parametric case where investors in bad standing

are excluded from loan markets, forgiveness policies that maximize µGV G+
∑+∞

s=0 µ
B(s)V B(s)

conditional on a given level for V B(0) also maximize the objective above. As a result, our
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results on the e�cient shape of forgiveness policies are completely unchanged.

5.2 Dead-weight loss from default

In the environment we have considered, investors bear the full direct cost τ of default. In

practice default may cause resources to be wasted by parties other than the defaulting agent.

Assume for instance that default carries a social cost C (in resources or in aggregate utility)

that rises with the frequency of default. This makes steady state welfare equal to:

µGV G +
+∞∑
s=0

µB(s)V B(s)− C

[
µGV G +

+∞∑
s=0

µB(s)V B(s)

]
δD.

Indeed, the mass of default in stationary equilibrium is
[
µGV G +

∑+∞
s=0 µ

B(s)V B(s)
]
δD. Since

we established in section 4 that

µB(0) =

[
µGV G +

+∞∑
s=0

µB(s)V B(s)

]
δD

in any stationary equilibrium, this welfare objective may be written more simply as,

µGV G +
+∞∑
s=0

µB(s)V B(s)− CµB(0)

or, given lemma 4.2,

µGV G +
+∞∑
s=0

µB(s)V B(s)− µG δDC

1− δD
= µG

(
V G − δDC

1− δD

)
+

+∞∑
s=0

µB(s)V B(s).

It follows that as long as V G − δDC
1−δD ≥ V B(s), which must hold if C or δD are su�ciently

small at the SSE under consideration, our results hold and can be established without any

change in the arguments we have made. But if C is large, the inequality may fail in which

case it becomes optimal to discourage investment as much as possible given the dead-weight

losses associated with default. In that case, permanent exclusion � or any forgiveness policy

which asymptotically drives investment to zero � is optimal.

Finally, it may also be the case that lenders experience a private cost when default occurs.

Introducing such a cost can be done simply by making it part of the lender's participation
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constraint in the maximization problem solved by investors when they select an o�er and does

not a�ect our main results in any way.

5.3 Private information

Suppose investors privately draw τ from the distribution F (·) each period before they o�er a

contract to lenders. Consider �rst the case where draws are independent across periods. For

simplicity, maintain the assumption that V G ≥ V B(0) in any SSE which holds true for instance

when parameters are such that investors are fully excluded from getting a loan. Because τ is

known before o�ers are made, SSEs feature potentially separate o�ers (k(τ), (m(τ)) for each

type τ . Separating o�ers from investors in good standing must solve for each particular type

τ ∈ [0, τ̄ ]:

maxπ
(
Ak −m+ βV G

)
+ (1− π)βV B(0)

subject to

k ∈ K

k ≤ M

m ≤ Ak

kR ≤ πm,

subject to the no-default constraint

−m+ βV G ≥ −τ + βV B(0),

and subject to the truth-telling constraint

Ak −m+ βV G ≥ max
τ ′ 6=τ

(
Ak(τ ′)−m(τ ′) + βV G, Ak(τ ′)− τ + βV B(0)

)
.

The truth telling constraint says that investors must be better o� revealing their type than

mimicking the contract o�ered by a di�erent type and strategically defaulting. Because

τ becomes known by all when contracts are separating, each o�er must be such that the

payment is made with probability one when the project succeeds, which is captured by the

no-default constraint. It follows that m(τ) = k(τ)R
π

for each type τ ∈ [0, τ̄ ], so that k and m

are co-linear. It then follows that raising m(τ) when it is feasible improves type τ ′s objective.
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Furthermore, increasing m weakens the truth-telling constraint since k increases linearly with

m while the right-hand side of the constraint is �xed. So either the no-default constraint binds

or k(τ) = maxK. It follows that there is a threshold default type τ above which investors

operate at maximum scale and earn the highest surplus possible when in good standing.

At τ = τ , the no-default constraint is exactly binding. So consider investors whose τ <τ .

They can pretend to be type τ and default when a payment comes due. For those people,

Ak(τ)− τ + βV B > Ak(τ)− τ + βV B = Ak(τ)−m(τ) + βV G

and it follows that any contract compatible with truth-telling must give them the best feasible

contract. In other words, there is no way to dissuade investors with low default cost from

pretending to be investors with τ = τ . It follows that all equilibrium o�ers must be such

that (k(τ), (m(τ)) are independent of τ and all SSEs must therefore feature pooling. As a

consequence, our results about the e�cient shape of exclusion policies are fully robust to this

variation.

The case with correlated draws across periods is more di�cult. In that case, investors'

payment histories contain information about types and o�ers will depend on beliefs about

this type, i.e. the reputation of investors given their history, as discussed for instance by

Corbae et al. (2016). E�cient forgiveness policies may likewise be belief-dependent. To see

this, take an extreme example with permanent types. Type I investors have a low cost of

default and may default both for strategic and non-strategic default while type II investors

have a prohibitively high default cost hence only default for non-strategic reasons. Over time,

type II's frequency of default must become ever closer to π so that their type becomes known

with ever more precision. Since those agents never default strategically it makes no sense to

punish default on part of those agents with exclusion. So, eventually, we must converge to

an economy where type I is identi�ed with arbitrary precision and may be excluded following

default whereas type II investors are also identi�ed and are not excluded following default.

This stark example implies that, in general, the e�cient forgiveness policy may be reputation

and history dependent.

But this does not imply that the shape of exclusion policies will change. To take an even

more extreme example, assume that types are known with certainty from date t = 0. Then

type II is never excluded at all � a degenerate case of the shape we have identi�ed as e�cient.

As for type I investors, can view them as comprising a sub-economy or our environment and

the shape of e�cient policies for them must once again have the shape we have identi�ed as
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e�cient in this paper. Forgiveness policies are type (reputation) dependent but, conditional

on type, they must have the shape we have shown to be e�cient. Generalizing these ideas

to types that are persistent but not permanent will likely require new arguments, but the

economics behind our main results should survive this generalization.

5.4 Long-term contracts

The randommatching framework we have adopted implies that investors and lenders in a given

match play a one-shot game with one another and, furthermore, that the only information

each have about past actions is contained in the public record. Assume alternatively that

investors and lenders have the ability to write long-term contracts and that matches may

last more than one period. To simplify matters, consider the case when K = {I} where

I > 0 is an investment that must be made once and for all in the �rst period of the match.

As in De Marzo and Fishman (2007), lenders can commit to contracts that specify transfers

from the investor to the lender as well as a termination decision (a decision to break the

match) for every possible history of output reports. Denote the termination value for lenders

by V L
T ≥ 0, an object which captures for instance the salvage value of the installed capital.

The termination payo� for investors is V I
T ≥ 0 and re�ects for instance the value of entering

into a new match. Taking termination payo�s as given, De Marzo and Fishman (2007) show

that the termination option is invoked with positive probability following a sequence of bad

reports. This is the case even though under the optimal contract it is understood by both

parties that all reports are truthful. Threatening the borrower with termination � even when

it is ex-post ine�cient � is the optimal way to provide incentives against strategic default in

this environment.

Now add to this environment exogenous match breaks which may occur say because the

investment opportunity ended exogenously or, equivalently, because all projects have random

but almost surely �nite lives. The public record would then optimally consist of a bad standing

signal which is activated when and only when a termination for cause occurs. In that world,

an equilibrium with exogenous termination value VG higher than termination value VB could

be sustained as a sequential equilibrium in which actions are long-term contracts rather than

one-period decisions. While establishing this is beyond the scope of this current paper, it

seems likely to us that equilibrium in which investors are temporarily excluded following

termination for cause can be built and that it remains e�cient for termination to be front-

loaded. Because the long-term contractual environment is much more challenging than the
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random matching framework we have employed, we recognize that formalizing these ideas will

be complex.

5.5 Risk-aversion

Much of the literature on endogenous default � Corbae et al. (2005) and Kehoe and Levine

(1993), for two prominent examples � focuses on the relationship between exclusion threats

and the endogenous level of risk-sharing. This subsection considers a version of our environ-

ment with a risk-sharing motive and shows that the optimal shape of the exclusion policy is

unchanged.

Assume that investors have time separable preferences with the same discount rate as

before but a Von Neumann-Morgenstern period utility function U that is concave with

|U(0)| < +∞. Further assume that the default cost τ is measured in consumption equiv-

alent units. Since lenders are risk-neutral, investors and lenders now have an incentive to

share risk. In principle, loans could therefore stipulate a positive transfer from lenders to

the investor when the project fails. Under the premise that lender actions are not recorded

however, lenders have no incentive to make such a transfer ex-post and so we will main-

tain the restriction that transfers are zero when the project fails. As has been the case

throughout this paper, we continue to focus on stationary and symmetric strategies. Any

SSE (kB,mB, kG,mG) is associated with continuation values V G and V B(n) for investors in

each possible state that solve

V G = (1− π)βV B(0) + πEτ max
{
U (AkG −mG) + βV G, U (AkG − τ) + βV B(0)

}
(5.1)

and, for investors who have been in bad standing for n ≥ 0 periods,

V B(n) = φnV
G + (1− φn)

[
πEmax {U (AkB −mB) , U (AkB − τ)}+ βV B(n+ 1)

]
. (5.2)

These continuation values remain uniquely de�ned at any SSE. Investors in good standing

choose to pay if the project succeeds and once they discover their default cost τ if

U (AkG −mG) + βV G ≥ U (AkG − τ) + βV B(0) (5.3)

which de�nes a unique threshold τ
(
k,mG, V

G, V B(0)
)
such that investors pay if and only if
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their ex-post default cost realization is above that threshold. Lenders break even provided:

kGR ≤ π
(
1− F

(
τ
(
k,mG, V

G, V B(0)
)))

mG. (5.4)

Likewise, problem (P1) needs to be amended to:

(P1′′) max
k,m

πU

(
Ak −

ˆ m

0

τdF +

ˆ τ̄

m

mdF

)
subject to:

k ∈ K,

k ≤ M,

m ≤ Ak

kR ≤ π(1− F (m))m.

With this notation in place, a symmetric and stationary equilibrium (SSE) can once again

be de�ned. An SSE is a quadruple (kB,mB, kG,mG), the associated policy functions V G

and V B(n), and stationary acceptance policies for lenders for every possible match and every

possible o�er, such that

1. The acceptance policy is optimal for lenders for every possible o�er in any match. That

is, o�ers are accepted if and only if they satisfy 5.4 when made by investors in good

standing and 3.4 when made by investors in bad standing;

2. Proposal (kB,mB) solves problem (P1′′);

3. Proposal (kG,mG) maximize

πU

(
Ak −

ˆ m−β[V G−V B(0)]
t

0

τdF +

ˆ τ̄

m−β[V G−V B(0)]

mdF

)
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subject to:

k ∈ K,

k ≤ M,

m ≤ Ak,

π(1− F
(
τ
(
k,m, V G, V B(0)

))
)m ≥ kR.

Our existence arguments go through virtually unchanged and lemma 3.4 continues to hold so

that the same de�nition of e�ciency can be stated and justi�ed. With the shortcut notation

UB ≡ πEmax {U (AkB −mB) , U (AkB − τ)}

we can write

V B(0) = φ0V
G + (1− φ0)

[
UB + φ1βV

G
]

+ (1− φ0)(1− φ1)
[
βUB + φ2β

2V G
]

+ . . .

=
UB

1− β
+ φ0Ṽ

G + (1− φ0)φ1βṼ
G + (1− φ0)(1− φ1)φ2β

2Ṽ G + . . .

where

Ṽ G = V G − UB
1− β

.

A similar expression obtains for V B(n) for all n > 0. In other words, introducing general

preferences results in level shift of continuation utility functions � which cannot have any

e�ect on welfare rankings of exclusion policy function - and a parallel shift of the gains from

forgiveness given V G. It follows that the same exclusion policy as in the linear case continues

to maximize the average welfare of investors in bad standing. The fact that this also maximizes

the volume of transactions follows from the same arguments as before.

5.6 Self-�nancing

Investors enter each period without any assets or endowments which simpli�es the analysis by

implying that the entire capital investment must be �nanced by lenders. Assume instead that

investors are endowed with a quantity a ≥ 0 of the good at the start of each period. In the

version of our model with time separable, Von Neumann-Morgenstern preferences, problem
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(P1) becomes:

max
k,m,s

πU

(
Ak −

ˆ m

0

τdF +

ˆ τ̄

m

mdF + (a− s)R
)

+ (1− π)U ((a− s)R)

subject to:

k + s ∈ K,

k ≤ M,

m ≤ A(k + s)

kR ≤ π(1− F (m))m

where s ≥ 0 is the investor's contribution to the project which can be implemented either via

a deposit over which the lender has a lien or a direct investment. The problem for investors

in good standing can be similarly adjusted. Saving and self-�nancing some of the capital they

employ enables investors to increase the size of the feasible o�er set. SSEs continue to be fully

summarized by a quadruple (kB,mB, kG,mG) and, although the self-investment choice may

vary across di�erent equilibria, lemma 3.4 continues to hold, and our e�ciency arguments

can be applied virtually unchanged to lead to the same optimal shape of forgiveness policy.

Put another way, allowing for self-�nancing via �xed investor endowments has no impact on

our main results. With exogenous but stochastic endowments, di�erent investors may start

each period with di�erent endowments and hence may make di�erent �nancing choices. If

we maintain the assumption that forgiveness policies are independent of the size of the loan

on which investors defaulted, continuation values remain common across investors and our

arguments will once again go through essentially una�ected.

The case in which investor assets are the result of endogenous saving decisions is substan-

tially more di�cult.12 When goods are storable and investors make saving decisions from

period to period � absent an equalization trick à la Lagos and Wright (2005) � any stationary

equilibrium involves a non-degenerate distribution of assets where an investor's wealth is a

function of the agent's entire income history. The shape and length of the forgiveness policy

must now impact saving policies. In fact, forgiveness policies could in principle depend on the

assets of agents in default or, equivalently, on the size of the loan on which agents defaulted.

12For that reason, much of the literature inspired by Kehoe and Levine (1993) and Alvarez and Jerman
(2000) assumes as we do that goods are non-storable.
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While we do not have obvious reasons to think that this a�ects the fact that at least some

front-loading of exclusion is optimal, we leave a complete treatment of this signi�cantly more

complex case for future work.13

5.7 Partial exclusion

In section 4 we restricted parameters so that (kB,mB) = (0, 0) in all SSEs and investors

in bad standing do not get a loan. While doing so economizes on notation and makes for

a tight mapping between our model and traditional models of endogenous default in which

exclusion is usually assumed to be full, our environment makes it easy to study situations

where (kB,mB) > (0, 0). The only condition we need for our results to go through is that

V B(n) ≤ V G for all n in SSE, so that being in bad standing is in fact detrimental.14

In practice, borrowers with recent defaults on their record � borrowers who recently �led

for bankruptcy, e.g., do have access � albeit comparatively limited � to some credit, as doc-

umented for instance by Han and Li (2011). In fact the evidence suggests that access to

credit improves over time while households are under a bankruptcy �ag, in part because

judges may become more lenient in authorizing new borrowing when distance from the most

recent bankruptcy has increased. Our model can accommodate this feature since it also al-

lows for equilibrium where lenders condition their actions on the time since borrowers have

defaulted. As long as the evolution of an investor standing � forgiveness odds in particular

� are exogenous, (kB,mB) must solve (P1′). Because solutions to (P1′) may be multiple,

one could construct equilibrium with di�erent loans for investors in bad standing, but this

multiplicity does not provide fundamental reasons why access to credit should improve over

time. A version of our model where investors gradually improve their standing as they make

payments while under default, on the other hand, does provide economic forces that could

sustain improving terms over time for those investors.

13Modeling endogenous savings would also enable one to revisit the question posed by Bulow and Rogo�
(1989) and revisited by Hellwig and Lorenzoni (2009) of whether excluding borrowers from saving following
default is necessary to sustain credit in environments such as ours where commitment is limited.

14Because in environments like ours the set of equilibrium is large and can contain surprising outcomes, we
cannot rule out the opposite situation in full generality. At the same time, as we have discussed in various
examples already, it is easy to restrict parameters so that equilibrium with V B(n) ≤ V G for all n do exist.
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6 Exclusion length

In our model, e�cient forgiveness policies must be deterministic and punishment must be �nite

in length. But what should that length be? In this section, we show that optimal exclusion

length depends in non-monotonic ways on fundamental parameters. For concreteness, we

continue to concentrate on SSEs in which exclusion is complete for investors in bad standing.

In that case and given a forgiveness policy,

V B(0) = φ0V
G + (1− φ0)φ1βV

G + (1− φ0)(1− φ1)φ2β
2V G + . . . = κV G

in all SSEs where κ = V B(0)
V G < 1 is an exclusion discount of sorts. Furthermore, given

that all e�cient forgiveness policies are deterministic and �nite κ uniquely pins down and is

negatively related to the length of exclusion associated with any e�cient forgiveness policy.

What is more, the participation constraint of lenders may be rewritten as:

π
(
1− F

(
mG − β(1− κ)V G

))
mG ≥ kGR. (6.1)

Note that under the parametric premise that there is no solution to (P1) so that (kB,mB) =

(0, 0) in all SSEs, (kG,mG) implies V G given κ. The search for the optimal level of κ may

then be organized as follows. Given κ,�nd a solution (kG,mG) to condition 6.1 that makes

V G highest. Since it makes V G highest it also maximizes V B(n) for all n.We can then update

κ until average steady state welfare is highest.

To illustrate these ideas, we will begin with a simple example. Consider a version of our

economy where the distribution F of default costs only puts mass at one point τ and where

K = {1} so that all projects must be operated at a unit scale when they are activated. In

particular, kG = 1 in all SSEs. If τ ≥ R
π
, lenders can set m = R

π
, which exposes them to

zero strategic default and enables them to break even. In that case, the optimal length of

exclusion is zero.

When τ < R
π
, on the other hand, investors do have static incentives to default for strategic

reasons. Absent some exclusion threat, they would all default which cannot be in equilibrium.

This yields a key simpli�cation in the construction of equilibrium. Because investors are

homogenous ex-ante, the optimal solution has to be such that all investors pay as long as

they can. As a result, in this simple example, the optimal exclusion policy must be the one

that makes payment among investors with successful projects just optimal.
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Investors all pay their loans when

m ≤ (1− κ)βV G + τ. (6.2)

It is clearly optimal to make this inequality tight. Otherwise investors are excluded for longer

than is strictly needed. Furthermore, it is not just incentive compatible but also optimal for

investors to pay since this makes µG = 1. The break-even condition for lenders becomes:

πm = π((1− κ)βV G + τ) = R, (6.3)

and we can solve for V G as follows:

V G = π
(
A−m+ βV G

)
+ (1− π)βκV G

since, in this case, investors only default for non-strategic reasons. This equation together

with the fact that

m = (1− κ)βV G + τ =
R

π

enables us to solve out for V G and obtain a condition which the exclusion discount κ must

solve in any equilibrium:

R− πτ
πβ(1− κ)

= πA−R +
R− πτ
(1− κ)

+
(1− π)κ(R− πτ)

π(1− κ)
.

A bit of algebra then yields a closed-form expression for the optimal exclusion policy:

κ =
π2(A− τ)− 1

β
(R− τπ)

π2(A− τ)− (R− τπ)
(6.4)

It follows that when default costs are homogenous at given value τ , the optimal exclusion

discount solves

κ = max

(
π2(A− τ)− 1

β
(R− τπ)

π2(A− τ)− (R− τπ)
, 0

)
.

In this simple example, exclusion length falls with investor patience (β), the project payo�

(A), project quality (π), and with the direct punishment (τ) associated with default. An

increase of patience increases the dissuasive power of exclusion and makes it possible to
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shorten its length. An increase in project payo� (y) makes exclusion more costly since the

bene�t from investing are higher. Raising π, likewise, makes the value of participation higher.

While, at the same time, it does lead to more opportunities to default for strategic reasons,

the positive e�ect on the value of participation dominates. Probably most interesting in this

example is the relationship between incentives to default for strategic defaults and exclusion

length. When the project succeeds, the cost of defaulting is two-fold: exclusion and direct

punishment τ.When τ is higher, exclusion becomes less useful and the planner can shorten it

which leads to a higher volume of transactions. On a basic level, the fact that the propensity

to default for strategic reasons matters for optimal exclusion length is not surprising. After

all, the only point of exclusion is to discourage strategic default.

While this simple example produces sharp comparative statics, a simple variation shows

that di�erent versions of our economy can yield very di�erent predictions. Indeed, assume

that K = {kL, kH} where kL < kH so that the project may now be operated either on small

scale or on a large scale. Assuming that problem (P1) remains such that (kB,mB) = (0, 0),

there are two possible types of SSEs with positive investment depending on whether kG equals

kL or kH . In either case, we must still have

(1− κ)βV G + τ =
kGR

π
.

Furthermore, the structure of our environment is such that V G is linear in kG, holding other

parameters the same. The equation above implies that if both types of SSEs exist, κ must

be higher when kG = kH than when kG = kL. This is intuitive. When more funds have to be

committed to the project by lenders, all else equal, more incentives to repay must be provided

to investors.

The crux of the issue for our purposes is that kG is endogenous and the fundamental

factors that cause capital choices to go up must have direct e�ects on incentives to repay as

well. To understand this, assume that π is initially such that in the SSE wherekG = kL is

feasible. One way to restrict parameters so that this holds is to set make β low enough so

that

βV G + τ <
kHR

π

so that, even if κ = 0 (i.e. even if exclusion is permanent) incentives to repay cannot be
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provided if the project is operated on a large scale but that

βV G + τ >
kLR

π

so that su�cient incentives can be provided to support kG = kL as an SSE.

Now assume that π rises in such a way that the �rst inequality is reversed. This can be

made to happen because βV G + τ rises with π while kHR
π

falls. With A or π su�ciently large

or β su�ciently low, the SSE with a large capital scale must be associated with higher average

welfare than the SSE with low capital. But if the individual rationality just holds at the new

parameter constellation, κ must be close to zero, and the length of exclusion must increase.

So we have built a case where, in exact contrast to the previous example, an increase in π

causes an increase in exclusion length. The same ideas show that an increase in τ can cause

large scale production to become feasible which may once again cause an increase in exclusion

length: a higher default cost can be associated with longer exclusion.

Section 6 considers yet another variation of this example in which default costs are no

longer homogenous. Introducing heterogeneity in default costs, once again, has ambiguous

e�ects on the optimal length of exclusion.

The bottom line is that optimal length of exclusion is a complex function of all fundamental

parameters in our model. Whereas the optimal shape of exclusion policies can be uniquely

pinned down as we have shown in this paper, the impact of parameters on the optimal

length of exclusion can only be established on a case-by-case basis. Outside of the simple

class of examples we have considered in this section, quantitative explorations are bound

to be necessary to pin down the relationship between the optimal length of exclusion and

fundamental parameters.

7 Conclusion

In a canonical model of borrowing and lending with endogenous default, providing public

records that make exclusion following default sustainable in equilibrium enlarges the set of

equilibrium that can be supported. We show that, e�ciently from the point of view of long-

term welfare, the public record technology should be designed so as to imply exclusion for

a �nite and deterministic number of periods following default. Not only does front-loading

exclusion maximize the volume of transactions, it also maximizes the welfare of the excluded,
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conditional on the fact that some punishment generally needs to be imposed to sustain pos-

itive lending. This set of results is robust to a host of considerations but they remain to

be generalized to environments in which investors accumulate resources over time and to

environments with long-term contracts. Our view is that the simple economics behind our

results should generalize to those settings although making that case will require substantially

di�erent arguments from ours.
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9 Appendix

9.1 Simpli�cation of expression P

We need to show that

(1− φ0)V B(1) + (1− φ0)(1− φ1)V B(2) + ...

is constant given constraint 4.2. To see it, write the expression as follows:

(1− φ0)φ1V
G +(1− φ0)(1− φ1)φ2βV G +(1− φ0)(1− φ1)(1− φ2)φ3β

2V G + ...

(1− φ0)(1− φ1)φ2V
G +(1− φ0)(1− φ1)(1− φ2)φ3βV G +(1− φ0)(1− φ1)(1− φ2)(1− φ3)φ4β

2V G + ...

(1− φ0)(1− φ1)(1− φ2)φ3V
G +(1− φ0)(1− φ1)(1− φ2)(1− φ3)φ4βV G +(1− φ0)(1− φ1)(1− φ2)(1− φ3)(1− φ4)φ5β

2V G

+....

Now sum the whole in�nite expression column by column. The coe�cients in the �rst column

sum up to

(1− φ0)− Π+∞
n=0(1− φn).

Given that
∑+∞

n=0 Πn
s=0(1−φn) < +∞, the second term is zero.15 As a result, the �rst column

gives (1−φ0)V G. For the second column sum all weights and apply the same argument as above

to get (1−φ0)(1−φ1). For the third column the sum of all weights is (1−φ0)(1−φ1)(1−φ2).

So summing it all we get:

(1− φ0)V G + (1− φ0)(1− φ1)βV G + (1− φ0)(1− φ1)(1− φ2)β2V G + ....

Now note that each term has a 1 − φ0 factor so that it can each be split into two pieces to

get:

V G+(1−φ0)βV G+(1−φ0)(1−φ1)β2V G+...−φ0V
G−(1−φ0)φ1βV

G−(1−φ0)(1−φ1)φ2β
2V G−...

The second part of the expression, given the constraint, is simply V B(0). The �rst part, other

than for the very �rst term, yet again features a common factor (1− φ0) which can be used

15In fact, not only is Π+∞
n=0(1 − φn) = 0 but, with the convention that if φn = 1 then φs = 1 for all s = 1,

then Π+∞
n=s(1 − φn) = 0 for all s ≥ 0. This means that the reasoning we apply to the �rst column applies

similarly to all other columns. The convention can be imposed without any loss of generality since φn = 1
caps exclusion at n periods with probability one.
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to split it into two subparts, leaving us with:

V G − V B(0) + βV G + (1− φ0)β2V G + ...

−β
{
φ0V

G − (1− φ0)φ1βV
G − (1− φ0)(1− φ1)φ2β

2V G − ...
}

By the constraint, the �nal line in this expression is nothing but βV B(0). Continuing in this

fashion shows that the whole sum is

V G − V B(0) + β
[
V G − V B(0)

]
+ β2

[
V G − V B(0)

]
=
V G − V B(0)

1− β

which is a constant given V G and V B(0), as claimed.

9.2 Full but �nite exclusion maximizes P

Given the previous result, maximizing P amounts to minimizing

(1− φ0) + (1− φ0)(1− φ1) + (1− φ0)(1− φ1)(1− φ2) + . . .

subject to the restriction that condition 4.2 must hold i.e. that V B(0) is what it needs to

be to support the stationary equilibrium. Traditional variational arguments show that this is

done by adopting the policy described in proposition 4.1.

To see this, assume �rst that φ2 = 1 so that excluded investors are sure to return to

markets after two periods of exclusion. In that case, the problem boils down to

min(1− φ0) + (1− φ0)(1− φ1)

subject to:

φ0 + (1− φ0)φ1β + (1− φ0)(1− φ1)β2 =
V B(0)

V G
.

Now add and subtract (1− φ0)(1− φ1)β to the left-hand side of the constraint to get:

φ0 + (1− φ0)β − (1− φ0)(1− φ1)(β − β2) =
V B(0)

V G
.

The proposition holds if φ0 > 0 =⇒ φ1 = 1. Assume by way of contradiction that φ0 > 0 but

φ1 < 1. Then it is possible to reduce φ0 by some ε > 0. This causes the �rst two terms of the
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constraint to fall by a total of ε(1 − β). Maintaining the constraint level thus requires that

(1− φ0)(1− φ1) falls by
ε(1− β)

β − β2
=
ε

β
.

But then (1−φ0) rises by ε while (1−φ0)(1−φ1) falls by ε
β
, which improves (i.e. lowers) the

objective strictly, the contradiction we sought.

Assume now that φ3 = 1. The objective becomes

min(1− φ0) + (1− φ0)(1− φ1) + (1− φ0)(1− φ1)(1− φ2)

subject to:

φ0 + (1− φ0)φ1β + (1− φ0)(1− φ1)φ2β
2 + (1− φ0)(1− φ1)(1− φ2)β3 =

V B(0)

V G
.

Rewrite the constraint as

φ1 + (1− φ1)φ2β + (1− φ1)(1− φ2)β2 =
V B(0)
V G − φ0

β(1− φ0)
.

This makes it clear that holding φo constant the problem in φ1 and φ2 is exactly the same as

before. This implies as before that if φ1 > 0 then φ2 = 1. But then in that case we are back

once again to the problem above which implies that if φ0 > 0 then φ1 = 1. If on the other

hand φ1 = 0 then the constraint reads as

φ0 + (1− φ0)φ2β
2 + (1− φ0)(1− φ2)β3 =

V B(0)

V G
.

But we can then invoke the same argument as above (add and subtract (1− φ0)(1− φ2)β2 to

the left-hand side of the constraint and proceed) to conclude that if φ0>0 and φ1 = 0 then

φ2 = 1 is optimal. But we already know that if φ2 = 1 then φ0>0 and φ1 = 0 cannot be

optimal.

All told then and proceeding recursively, the solution has to be such that if φs > 0 for

some s then φs+1 = 1, as long as φ is eventually 1. Under that premise, minimizing

(1− φ0) + (1− φ0)(1− φ1) + (1− φ0)(1− φ1)(1− φ2) + . . .

42



is done by selecting the unique policy {φ∗t}
T
t=0 that satis�es the conditions of proposition 4.1

and meets the punishment constraint exactly.

To complete the proof then, we only need to argue that the premise that φ is eventually 1

is without loss of generality. Denote by
{
φ̄t
}T
t=0

a policy that minimizes the above objective

without imposing that restriction. That policy must be such that φ̄t > 0 for at least one t.

So there must be a �rst non-zero term. Without loss of generality, assume φ̄0 > 0. (The

argument below can be shifted forward if φ̄0 is the �rst non-zero term is further along the φ

sequence.)

Fix ε > 0. Pick T high enough so that

+∞∑
s=T

βsV G <
ε

k

where k is a positive constant to be speci�ed below. This cuto� has the property that the

expected value (
φ̄0 + (1− φ̄0)φ1β + (1− φ̄0)(1− φ̄1)φ̄2β

2 + . . .
)
V G

accounted for by
{
φ̄t
}T−1

t=0
has to be within ε

k
of V B(0). Now consider the alternative policy{

φ̂t

}T
t=0

which coincides with
{
φ̄t
}T
t=0

up to T − 1 but is identically one thereafter. That

policy lowers the objective vis-a-vis
{
φ̄t
}T
t=0

but may exceed V B(0) by at most ε. This can

be recti�ed by lowering φ̂0 = φ̄0 > 0 by an amount less than ε as long as k is selected to be

large enough. The resulting policy gives an objective value within ε of
{
φ̄t
}T
t=0

and this is

true, a fortiori, of {φ∗t}
T
t=0. Since {φ∗t}

T
t=0 is ε-optimal for all ε, it achieves the same minimum

as
{
φ̄t
}T
t=0

, and is therefore optimal. This completes the proof.

9.3 Maximizing date zero welfare

We have made the case that exclusion policies that maximize stationary welfare must front

load-punishment. Does front-loading punishment also maximize the welfare of the investors

who happen to be alive at date zero, with types arbitrarily distributed? If possible, it is

clearly e�cient to forgive all the investors in bad standing at date 0 since punishing them has

no remaining impact on incentives while forgiving them makes the volume of transactions as

high as it can be at date 0.We will consider both the case where those amnesties are possible

and the case where they cannot.
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For simplicity, we will concentrate our attention once again on the situation where problem

(P1) has no solution so that investors in bad standing do not operate their project. Further-

more, we also continue to restrict our attention on symmetric SSEs, de�ned as before, with

the implied constant continuation utilities. Such an SSE continues to exist for all possible

forgiveness policies and the arguments for why this is so are unchanged.

In keeping with our earlier notation, denote the mass of investors in good standing at date

0 by µG0 . When amnesty is an option, it is e�cient to set µG0 = 1 via immediate forgiveness

but, in general, the mass µB0 (n) of incumbent agents who, at date 0, have been excluded for

n period may be positive. E�cient forgiveness policies must maximize

µG0 V
G +

+∞∑
s=0

µB0 (s)V B(s)

where V N is the expected lifetime utility of agents who are not excluded at date 0 under

the assumed SSE while V B(s) is the same for agents who have been excluded for s periods

subject to

V B(0) = φ0V
G + (1− φ0)φ1βV

G + (1− φ0)(1− φ1)φ2β
2V G + . . .

Importantly, we no longer need to impose
∑+∞

n=0 Πn
s=0(1 − φn) < +∞. As we will see below

in fact, policies that imply that eventually all agents are excluded may well be optimal when

maximizing date zero welfare.

To proceed, assume an amnesty of all agents who are in bad standing at date 0 is feasible.

Following amnesty, the economy begins date 0 will all agents in good standing. In that case,

SSEs are trivial to rank in terms of welfare. The lifetime utility of non-excluded agents at

date 0 is fully summarized by the value V B(0) of becoming excluded since it implies the terms

on loans and, in turn, V G which is all we need to know when µG0 =1. It follows that exclusion

policies that imply the same V B(0) all result in the same welfare level. This implies that

multiple policy shape may now be optimal. Indeed, forgiveness policies with very di�erent

pro�les may imply the same level V B(0) of initial punishment. To show that this is in fact

a possibility, consider a parametric version of our environment in which agents discount the

future at a rate β = 0.85, the probability of success is π = 0.95, output when positive is

y = 1.5, and the opportunity cost of funds is R = 1.2. The default cost τ follows a log-normal

distribution with location parameter 2 and dispersion parameter 1.
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Figure 1: Welfare-equivalent exclusion policies when amnesty is an option

Consider then a �exible, sigmoid class of forgiveness policies characterized by two param-

eters (a, b) such that for n ≥ 0:

φn =
1

1 + exp [a(n− b)]

This family can closely approximate most monotonic exclusion policies including step-functions

in which case b pins down the location of the in�ection point while a pins down the steepness

of the in�ection. The sign of a determines whether forgiveness odds rise or fall with time in

exclusion. This speci�cation thus allows both for policies that front-load and policies that

back-load punishment.

In this parametric case, the two policies displayed in �gure 1 imply the same equilibrium

level of V B(0) hence the same level of welfare. We located these two welfare equivalent policies

by searching numerically for welfare maximizing policies given V B(0) starting from di�erent

initial conditions. The search stops the moment the procedure has found a candidate that

achieves the target level of V B(0)16 Many other policies, including non-monotonic ones, deliver

16A numerical procedure is needed to look for those welfare-equivalent policies since any change in the policy
implies a change in lending terms and value function. The �rst step of our procedure solves for equilibrium
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the same welfare level but those two speci�c examples su�ce to convey two key ideas. First,

when amnesty is an option, the e�cient shape of exclusion policies is indeterminate. One of

the two policies displayed in the �gure front-loads punishment in the sense that forgiveness

odds are initially low but then rise, while the other back-loads punishment. In other words,

while front-loading is uniquely e�cient under the long-term perspective we adopted in previous

sections, it is only weakly optimal when maximizing the welfare of investors alive at date 0 and

when amnesty is an option. Second, policies that violate ergodicity criterion
∑+∞

n=0 Πn
s=0(1−

φn) < +∞ can be e�cient. The back-loaded policy shown in the �gure has forgiveness

policies converge to zero. Therefore, there is a positive probability that excluded agents may

never return to the non-excluded fold. The long-term distribution of types, in that case, is

degenerate at µG = 0.

Front-loading punishment is thus but one of countless e�cient shapes for exclusion policies

when amnesty is possible. When amnesty is not feasible, on the other hand, our e�ciency

criterion takes into account the welfare of existing agents who happen to be excluded at date

0. This restores bene�ts for front-load punishment, as the next result shows.

Proposition 9.1. Let n∗ be the highest number of periods for which borrowers alive at date

0 have been excluded, i.e. n∗ = sup
{
n : µB0 (n) > 0

}
. Then, at any e�cient policy, either

φn∗ = 1 or φn = 0 for all n < n∗.

Proof. Among agents alive at date 0, the welfare of investors in good standing and investors

who just lost their good standing (n = 0) is pinned down by V B(0). Therefore, these agents

are indi�erent across all exclusion policies that deliver V B(0). Assume that µB(1) > 0 and

consider any policy such that that φ1 < 1 while φ0 > 0. Recall that we must have

V B(0) = φ0V
G + (1− φ0)V B(1).

Holding all value functions the same then, we can lower φ0 while maintaining V B(0) by

raising V B(1), leaving the welfare of investors in good standing and those who just lost their

standing (n = 0) una�ected, but making agents who have been in bad standing for one period

(n = 1) strictly better o�. In addition, since V B(0) is unchanged, any set of time-invariant

equilibrium loan terms remain so, so that V G is una�ected as well. This means that any

policy such that φ1 < 1 while φ0 > 0 is suboptimal if µB(1) > 0. This proves the result when

given an exclusion policy. The second step looks for policies that maximize V N given V E(0). Our code is
available for download at http://erwan.marginalq.com/index_�les/wp.htm.
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n∗ = 2. Extending the argument recursively establishes the proposition for all n∗.

The argument above begins with the same observation that leads to indeterminacy in the

case with amnesty: under any SSE, the lifetime utility of agents who are in good standing at

date 0 is fully summarized by V B(0). The same holds, obviously, for agents who just lost their

standing (n = 0). Those agents are indi�erent across all policies that deliver V B(0). Policies

that front-load punishment (φ = 0) on the other hand, bene�t agents who have been excluded

for more period (n > 0) since more punishment early means less necessary punishment later.

This result has the following key implication for our purposes:

Corollary 9.2. If µB0 (n) > 0 for all n ≤ n∗, then all e�cient exclusion policies must have

the shape described in proposition 4.1 up to n∗.

Proof. If φn∗ < 1 at all optimal policies then the result follows. If φn∗ = 1 then repeating the

argument above implies that either φn∗−1 = 1 or φn = 0 for all n < n∗ − 1, and the result

follows.

The premise that µB0 (n) > 0 for all n ≤ n∗ should generally be expected to hold since

any policy that induces a stationary distribution such that µB(n) > 0 for some n must also

induce µB(n− 1) > 0. If initial conditions at date 0 are the result of an exclusion policy that

has been in place for a while, they will therefore satisfy that premise.

In summary, front-loading punishment is only one of many e�cient policies when amnesty

is feasible. But some of front-loading punishment is once again strictly optimal when amnesty

is not an option.

9.4 Heterogenous default costs and exclusion length

Assume that ex-post default costs can either be low at τL = τ − ε or high at τH = τ + ε where

ε > 0 and, for concreteness, assume that these two outcomes are equally likely. The exclusion

length can be set so as to dissuade both ex-post types from defaulting from strategic reasons.

Instead, it can be set to dissuade just the high-default cost borrower. Finally, exclusion length

can be such that it does not dissuade either borrower type from defaulting for strategic reasons.

In other words, there are three possibilities. We can set κ to solve (6.4) for τ = τH in

which case only low-default cost borrowers default for strategic reasons. Low-default cost

agents are then excluded for the corresponding time but since they cannot be dissuaded from

strategic default, it makes no sense to exclude them any longer than what is strictly necessary
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to keep high-cost agents in line. If this option turns out to be optimal, note that imposing a

mean-preserving spread on F results in lowering the length of exclusion. Second, we can set κ

to solve (6.4) for τ = τL so that no agent ever defaults for strategic reasons. In that case, the

mean-preserving spread results in lengthening the duration of exclusion. Third and �nally,

we can simply give up on dissuading any agent from strategic default by setting κ = 0.

Each of those three results of spreading F is e�cient for certain parameters. This means

that, in general, mean-preserving spreads on incentives to default for strategic reasons have

ambiguous e�ects on e�cient exclusion length. We can describe this ambiguity more precisely.

Proposition 9.3. Starting from an economy with homogenous default costs in which optimal

exclusion length is positive, a mean-preserving spread in default costs raises exclusion length

for ε small enough but must eventually drive exclusion length to zero as ε becomes large

Proof. Start from the homogenous economy and introduce an in�nitesimal spread τH − τL =

ε>0. Adjusting κ by setting τ = τL in (6.4) has no �rst order e�ect on any policy. Not

adjusting, however, would cause half of agents with successful projects to begin defaulting for

strategic reasons. Therefore adjusting by raising exclusion length in�nitesimally is e�cient.

Once τH − τL becomes large, high-default cost agents need not be dissuaded any longer

while low default cost agents cannot be dissuaded by exclusion as τL becomes low and then

eventually negative (these agents get positive utility from defaulting.) We now have no choice

but to give up on the low-cost agents.17 This completes the proof.

Local mean-preserving spreads in default costs cause exclusion length to increase because

it is e�cient to keep low-default cost borrowers from defaulting for strategic reasons. But

as the spread in F becomes large, exclusion threats become less potent. High default-cost

agents do not default anyway while very low-default cost agents simply cannot be dissuaded

from doing so.

17As the preceding discussion explained, before reaching zero there may be a point where it is optimal to
only dissuade high-cost agents. Once that stage is reached, a bigger spread starts lowering exclusion length.
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