Financial Engineering and Economic Development

Pedro Amaral¹ Dean Corbae² Erwan Quintin²

¹California State University – Fullerton

²University of Wisconsin – Madison

March 2, 2018

・ 同 ト ・ ヨ ト ・ ヨ ト

 Financial development and economic development are highly correlated

イロン 不得 とくほう 不良 とう

3

- Financial development and economic development are highly correlated
- But at high levels of development, the connection becomes weaker, if not negative

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Financial development and economic development are highly correlated
- But at high levels of development, the connection becomes weaker, if not negative
- Typical story:
 - 1. Institutional improvements initially makes credit available to heretofore borrowing constrained producers
 - But eventually much of financial development is repackaging and this has ambiguous effects on output and TFP

- Financial development and economic development are highly correlated
- But at high levels of development, the connection becomes weaker, if not negative
- Typical story:
 - 1. Institutional improvements initially makes credit available to heretofore borrowing constrained producers
 - But eventually much of financial development is repackaging and this has ambiguous effects on output and TFP
- Our goal: formalize and evaluate the second part of this story

イロト 不同 とくほ とくほ とう

 Intermediaries split cash-flows (=create securities) to cater to heterogenous investors

イロト 不同 とくほ とくほ とう

3

- Intermediaries split cash-flows (=create securities) to cater to heterogenous investors
- When security creation costs fall:
 - 1. Security creation activities increase
 - 2. Some investment projects that were not profitable before become profitable (and vice versa)

イロト 不同 とくほ とくほ とう

-

- Intermediaries split cash-flows (=create securities) to cater to heterogenous investors
- When security creation costs fall:
 - 1. Security creation activities increase
 - 2. Some investment projects that were not profitable before become profitable (and vice versa)
- TFP impact depends on the average productivity of entering and exiting projects

(日本) (日本) (日本)

- Intermediaries split cash-flows (=create securities) to cater to heterogenous investors
- When security creation costs fall:
 - 1. Security creation activities increase
 - 2. Some investment projects that were not profitable before become profitable (and vice versa)
- TFP impact depends on the average productivity of entering and exiting projects
- While spending on securities generally rises, much of this spending may go to security creation costs and producer/intermediary rents

イロト イポト イヨト イヨト 一日

- Intermediaries split cash-flows (=create securities) to cater to heterogenous investors
- When security creation costs fall:
 - 1. Security creation activities increase
 - 2. Some investment projects that were not profitable before become profitable (and vice versa)
- TFP impact depends on the average productivity of entering and exiting projects
- While spending on securities generally rises, much of this spending may go to security creation costs and producer/intermediary rents
- Impact on capital formation and output is ambiguous

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Intermediaries split cash-flows (=create securities) to cater to heterogenous investors
- When security creation costs fall:
 - 1. Security creation activities increase
 - 2. Some investment projects that were not profitable before become profitable (and vice versa)
- TFP impact depends on the average productivity of entering and exiting projects
- While spending on securities generally rises, much of this spending may go to security creation costs and producer/intermediary rents
- Impact on capital formation and output is ambiguous
- It is small at best, if not negative outright

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Literature

- ▶ King and Levine (1993), Rajan and Zingales (1998) ...
- Amaral and Quintin (2010), Midrigan and Xu (2014), Moll (2014)...
- Berkes, Panizza and Arcand (2012), Gennaioli, Shleifer and Vishny (2012)
- Allen and Gale (1989, 1991), Corbae and Quintin (2016)

Other related papers

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

The environment

- Time is discrete and infinite
- Mass one of two-period lived households
- Supply one unit of labor when young, invest their earnings, consume when old
- Household type 1 is risk neutral
- Household type 2 is infinitely risk averse (only value the worst-case scenario)
- Large mass of one-period lived producers
- Stand-in intermediary

(日本) (日本) (日本)

Safe technology

- Safe technology transforms capital k into Ak^ω units of the consumption good with ω ∈ (0, 1)
- Household earn gross return $R \equiv \omega k^{\omega-1}$

(日本) (日本) (日本)

Safe technology

- Safe technology transforms capital k into Ak^ω units of the consumption good with ω ∈ (0, 1)
- Household earn gross return $R \equiv \omega k^{\omega-1}$
- Rents consumed every period by producers

・ 同 ト ・ ヨ ト ・ ヨ ト …

Safe technology

- Safe technology transforms capital k into Ak^ω units of the consumption good with ω ∈ (0, 1)
- Household earn gross return $R \equiv \omega k^{\omega-1}$
- Rents consumed every period by producers
- ► Risk-averse household lose fraction δ ∈ (0, 1) of their investment in transaction costs so that their net return is (1 − δ)R

イロト イポト イヨト イヨト 二日

Risky technology

- Each producer has a type (z_B, z_G)
- Can activate a project by installing a unit of capital

・ 同 ト ・ ヨ ト ・ ヨ ト …

Risky technology

- Each producer has a type (z_B, z_G)
- Can activate a project by installing a unit of capital
- Once capital is installed, aggregate conditions are either good (G) or bad (B)
- Markov with transition T

Risky technology

- Each producer has a type (z_B, z_G)
- Can activate a project by installing a unit of capital
- Once capital is installed, aggregate conditions are either good (G) or bad (B)
- Markov with transition T
- ► An active producer of talent z ∈ {z_B, z_G} transforms labor n into the consumption good according to

$$z^{1-lpha} n^{lpha}$$

where $\alpha \in (0, 1)$

Define:

$$\Pi(w;z) \equiv \max_{n>0} z^{1-\alpha} n^{\alpha} - nw$$

Intermediation

- Investments in risky projects are intermediated
- Intermediary purchases a project for price $\kappa(z_B, z_G)$
- It sells claims to the project's output

・ 同 ト ・ ヨ ト ・ ヨ ト

Intermediation

- Investments in risky projects are intermediated
- Intermediary purchases a project for price $\kappa(z_B, z_G)$
- It sells claims to the project's output
- Selling securities to risk-neutral agents is free
- Selling securities to risk-averse agents carries a verification cost c

(周) (ヨ) (ヨ)

-

Risk-averse household problem

 $\max_{a^S, a^G, a^B} \min\left(c_B, c_G\right)$

subject to:

$$w_t = a^S + a^G + a^B$$

$$c_B = a^S(1-\delta)R + a^B R(B|\eta_t)$$

$$c_G = a^S(1-\delta)R + a^B R(G|\eta_t)$$

where

$$R(B|\eta_t) = \frac{R}{T(B|\eta_t)}$$
$$R(G|\eta_t) = \frac{R}{T(G|\eta_t)}$$

イロン 不得 とくほう 不良 とう

3

Risk-neutral household problem

$$\max_{a^{S},a^{G},a^{B}}T\left(B|\eta_{t}\right)c_{B}+T\left(G|\eta_{t}\right)c_{G}$$

subject to:

$$w_t = a^S + a^G + a^B$$

$$c_B = a^S R + a^B R (B|\eta_t)$$

$$c_G = a^S R + a^B R (G|\eta_t)$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Risk-neutral households are willing to pay

$$q^1(B) = \frac{T(B|\eta_{-1})}{R}$$

for a marginal increase in their payoff if bad times materialize

Risk-neutral households are willing to pay

$$q^1(B) = \frac{T(B|\eta_{-1})}{R}$$

for a marginal increase in their payoff if bad times materialize

Likewise,

$$q^1(G) = \frac{T(G|\eta_{-1})}{R}$$

・ 通 ト ・ ヨ ト ・ ヨ ト

Risk-neutral households are willing to pay

$$q^1(B) = \frac{T(B|\eta_{-1})}{R}$$

for a marginal increase in their payoff if bad times materialize

Likewise,

$$q^1(G) = \frac{T(G|\eta_{-1})}{R}$$

As for risk-averse agents, it only make sense to sell safe securities to them and they value safe payoffs by

$$q^2 = \frac{1}{(1-\delta)R}$$

(日本) (日本) (日本)

Risk-neutral households are willing to pay

$$q^1(B) = \frac{T(B|\eta_{-1})}{R}$$

for a marginal increase in their payoff if bad times materialize

Likewise,

$$q^1(G) = \frac{T(G|\eta_{-1})}{R}$$

As for risk-averse agents, it only make sense to sell safe securities to them and they value safe payoffs by

$$q^2 = \frac{1}{(1-\delta)R}$$

By assumption,

$$q^2 > q^1(B) + q^1(G)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Intermediary's problem

Intermediaries choose b to maximize:

$$q^{2}b + q^{1}(G)\left(\Pi(w(G); z_{G}) - b\right) + q^{1}(B)\left(\Pi(w(B); z_{B}) - b\right) \\ -\kappa(z_{B}, z_{G}) - c\mathbf{1}_{\{b>0\}},$$

subject to:

 $b \leq \Pi(w(B); z_B).$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Equilibrium

An equilibrium consists of project prices, wage rates, security menus, pricing kernels, and policies for all agents such that, at all dates and histories:

- 1. Old agents consume the payoff of their portfolio while young agents save their earnings
- 2. Security menus solve the intermediary's problem
- 3. Profits are zero for the intermediary
- 4. $R_t = \omega k_t^{\omega-1}$
- 5. Producers of type *z* are active if and only if $\kappa_t(z_B, z_G) \ge 1$
- 6. The market for labor clears
- 7. The market for each security clears

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Financial policies

Lemma

In any equilibrium, the consumption of risk-averse agents is risk-free and they only purchase risk-free securities.

イロト イポト イヨト

Financial policies

Lemma

In any equilibrium, the consumption of risk-averse agents is risk-free and they only purchase risk-free securities.

Lemma

In any equilibrium, κ is monotonic among active projects.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Financial policies

Lemma

In any equilibrium, the consumption of risk-averse agents is risk-free and they only purchase risk-free securities.

Lemma

In any equilibrium, κ is monotonic among active projects.

Proposition

If the intermediary activates projects of type $z \equiv (z_B, z_G)$, then it also activates all projects of type $z' \ge z$. Furthermore, among active projects and μ -almost surely:

- 1. *Either* b(z) = 0 *or* $b(z) = \Pi(w(B); z_B)$
- 2. $b(z_B, z_G)$ is monotonic in z_B in the sense that given z_G , $b(z'_B, z_G) \ge b(z_B, z_G)$ whenever $z'_B > z_B$, strictly so when $b(z_B, z_G) > 0$.

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Aggregation

Let K be the aggregate quantity of capital used to operate active projects. Then:

$$K = \int_{Z_{\Theta}} d\mu$$

Furthermore,

$$F(\eta, K, N) = \bar{z}(\eta)^{1-\alpha} K^{1-\alpha} N^{\alpha},$$

where \bar{z} is the average productivity of active projects.

→ 伺 → → 目 → → 目 → つへ()→

Existence and comparative statics

Proposition

An equilibrium exists. Furthermore, all equilibria feature strictly positive storage.

イロト イポト イヨト イヨト

Existence and comparative statics

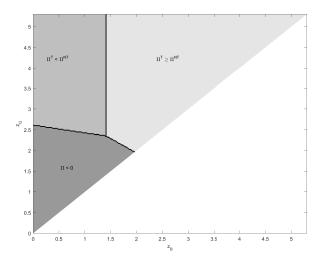
Proposition

An equilibrium exists. Furthermore, all equilibria feature strictly positive storage.

Proposition

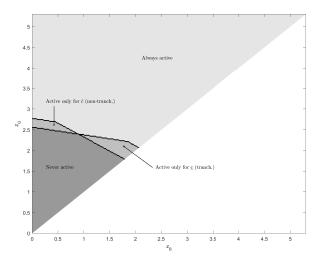
Assume that $\frac{Z_G}{Z_B}$ is μ -almost surely a constant. Assume that in a given economy and in a particular period, security creation costs suddenly fall. An equilibrium path exists in economy where gross investment (i.e. spending on securities) rises on impact.

・ 同 ト ・ ヨ ト ・ ヨ ト …


Parametrization

- One period= 25 years
- $\omega = .37$ which implies a yearly safe rate of return of 4%
- δ = 0.22 which means that risk-averse agents are willing to pay 100 basis points premium on safe assets
- $T_{BB} = .2, T_{GG} = .8$
- μ is bivariate normal and is specified to imply:
 - 1. Average output difference of 1% a year between good and bad times
 - 2. A ratio of producer rents to value added of around 10%

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの


Producer/intermediary policies

Amaral Corbae Quintin Financial Engineering and Economic Development

ъ

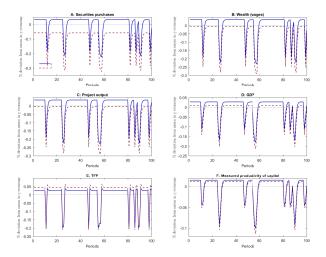
Changes in security creation costs

Amaral Corbae Quintin Financial Engineering and Economic Development

ъ

Comparative statics for capital formation

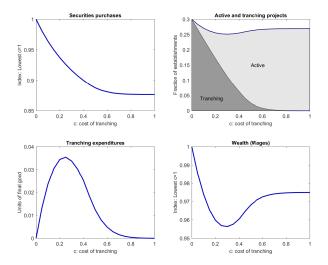
 Δ capital formation = Δ spending on securities


Comparative statics for capital formation

 Δ capital formation $= \Delta$ spending on securities

- Δ security creation expenditures
- Δ risky producer rents.

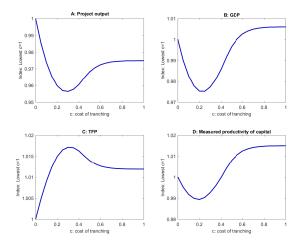
・ 同 ト ・ ヨ ト ・ ヨ ト …


Stochastic steady state

Amaral Corbae Quintin Financial Engineering and Economic Development

< ∃⇒

Changes in security creation costs

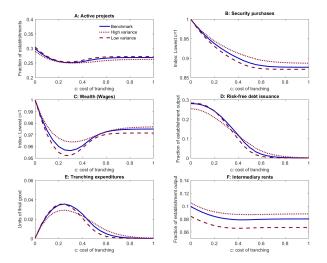


Amaral Corbae Quintin Financial Engineering and Economic Development

 $\langle \Box \rangle \langle \Box \rangle$

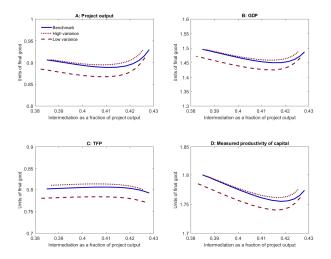
프 > + 프 >

Changes in security creation costs

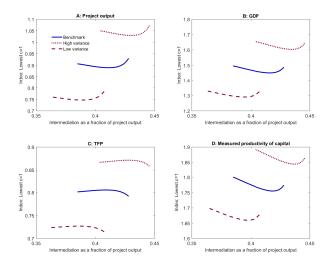


 $\langle \Box \rangle \langle \Box \rangle$

2 → < 2 →


Sensitivity to talent dispersion

Amaral Corbae Quintin Financial Engineering and Economic Development


イロト イポト イヨト イヨト

Financial engineering and economic development

Amaral Corbae Quintin Financial Engineering and Economic Development

Enterprise leads, finance follows

イロト イポト イヨト イヨト

Data I

We look at two proxies for financial complexity:

- Securitization activity
- Private bond market capitalization

・ 同 ト ・ ヨ ト ・ ヨ ト

Data I

We look at two proxies for financial complexity:

- Securitization activity
- Private bond market capitalization

Unconditionally, financial complexity and economic development are positively correlated

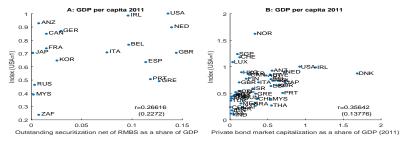
・ 同 ト ・ ヨ ト ・ ヨ ト …

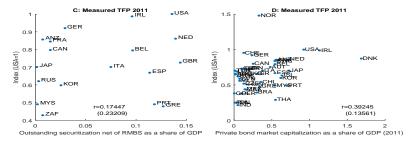
-

Data I

We look at two proxies for financial complexity:

- Securitization activity
- Private bond market capitalization


Unconditionally, financial complexity and economic development are positively correlated


Conditionally on income they are not

(個) (ヨ) (ヨ)

-

Data II

Amaral Corbae Quintin Financial Engineering and Economic Development

イロト イポト イヨト イヨト

- We find the impact of making security creation cheaper to be small, and it can be negative
- Much of the investment boom caused by making securitization cheaper can be dissipated into creation costs and rents

(画) (目) (目)

- We find the impact of making security creation cheaper to be small, and it can be negative
- Much of the investment boom caused by making securitization cheaper can be dissipated into creation costs and rents
- Probably best to think of financial development as consisting of two distinct phases
 - 1. Initially, institutional gains enable constrained producers to become active and/or operate more effectively.
 - In economies with already well functioning markets, financial innovation tends to take the form of repackaging

イロト 不得 とくほ とくほ とう

- We find the impact of making security creation cheaper to be small, and it can be negative
- Much of the investment boom caused by making securitization cheaper can be dissipated into creation costs and rents
- Probably best to think of financial development as consisting of two distinct phases
 - 1. Initially, institutional gains enable constrained producers to become active and/or operate more effectively.
 - In economies with already well functioning markets, financial innovation tends to take the form of repackaging
- First phase delivers potentially high output and TFP gains

イロト イポト イヨト イヨト 一日

- We find the impact of making security creation cheaper to be small, and it can be negative
- Much of the investment boom caused by making securitization cheaper can be dissipated into creation costs and rents
- Probably best to think of financial development as consisting of two distinct phases
 - 1. Initially, institutional gains enable constrained producers to become active and/or operate more effectively.
 - In economies with already well functioning markets, financial innovation tends to take the form of repackaging
- First phase delivers potentially high output and TFP gains
- Second phase probably not so much

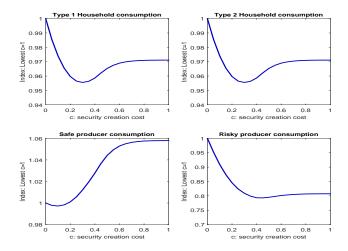
イロト 不得 とくき とくきとうき

More papers

- Goldsmith (1969), McKinnon (1973) and Shaw (1973)
- Greenwood and Jovanovic (1990), Bencivenga and Smith (1991), Banerjee and Newman (1993), Khan (2001), Amaral and Quintin (2006)
- Erosa (2001), Jeong and Townsend (2007), Erosa and Cabrillana (2008), Quintin (2008), Buera, Kaboski, and Shin (2011), Buera and Shin (2013), Caselli and Gennaioli (2013)

► Go back

イロト イポト イヨト イヨト 二日


Algorithm

- Given parameters, solve for household and intermediary policy functions for every possible aggregate state of the economy;
- 2. Draw a 1000-period sequence of aggregate shocks $\{\eta_t\}_{t=1}^{1000}$ using the Markov transition matrix T and record the value of all endogenous variables starting from an arbitrary value of aggregate wealth;
- 3. After dropping the first 100 periods, so that assumed initial conditions have at most a negligible effect on the value of endogenous variables, compute average values for all endogenous variables.

Go back

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Welfare

◆ Go back
< □ > < 畳 > < 差 > < 差 > 差 のへで