Optimal Exclusion

Cyril Monnet¹ Erwan Quintin²

¹University of Bern and SZ Gerzensee

²University of Wisconsin – Madison

May 20, 2018

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

∃ 900

Motivation

A vast literature (Kehoe and Levine, 1993, Chatterjee et al., 2007, ...) studies the role of exclusion in models with endogenous default

イロト イポト イヨト イヨト

Motivation

- A vast literature (Kehoe and Levine, 1993, Chatterjee et al., 2007, ...) studies the role of exclusion in models with endogenous default
- The specification of exclusion policies varies greatly across papers:
 - 1. Permanent exclusion
 - 2. Finite and deterministic exclusion
 - 3. Constant forgiveness lotteries
 - 4. One-time forgiveness lottery
 - 5. . . .

イロン 不得 とくほ とくほ とう

Motivation

- A vast literature (Kehoe and Levine, 1993, Chatterjee et al., 2007, ...) studies the role of exclusion in models with endogenous default
- The specification of exclusion policies varies greatly across papers:
 - 1. Permanent exclusion
 - 2. Finite and deterministic exclusion
 - 3. Constant forgiveness lotteries
 - 4. One-time forgiveness lottery
 - 5. ...
- What is the optimal shape of of exclusion in in a canonical model of lending with endogenous default?

イロト イポト イヨト イヨト 二日

 Full exclusion for a finite and deterministic number of periods maximizes stationary equilibrium welfare

∃ 900

イロト 不得 とくほ とくほ とう

Results

- Full exclusion for a finite and deterministic number of periods maximizes stationary equilibrium welfare
- It maximizes the the stationary volume of mutually beneficial transactions ...

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Results

- Full exclusion for a finite and deterministic number of periods maximizes stationary equilibrium welfare
- It maximizes the the stationary volume of mutually beneficial transactions ...
- ...and the average welfare of the excluded

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Results

- Full exclusion for a finite and deterministic number of periods maximizes stationary equilibrium welfare
- It maximizes the the stationary volume of mutually beneficial transactions ...
- ...and the average welfare of the excluded
- We go on to characterize how the optimal length of punishment depends on fundamentals such as agent patience and the direct consequences of default, if any

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Literature

- Kehoe and Levine (1993), Kocherlakota (1996), Alvarez and Jerman (2000), Chatterjee et al. (2007), Tertilt et. al (2007) Liu and Skrzypacz (2013)
- Bond and Krishnamurthy (2004), Elul and Gottardi (2015), Bethune et al. (2017)
- Dubey et al. (2005), Quintin (2013),

Other related papers

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 ののの

The environment

- Time is discrete and infinite
- One, non-storable good
- Infinitely-lived investors can activate a project each period which delivers y > 0 with probability π, nothing otherwise
- Requires one unit of the good at the start of the period
- Investors are risk-neutral and discount future payoffs at rate β
- Large mass of lenders are born each period with a unit of the good

イロト 不同 とくほ とくほ とう

э

The environment

- Time is discrete and infinite
- One, non-storable good
- Infinitely-lived investors can activate a project each period which delivers y > 0 with probability π, nothing otherwise
- Requires one unit of the good at the start of the period
- Investors are risk-neutral and discount future payoffs at rate β
- Large mass of lenders are born each period with a unit of the good
- Can store their endowment for return $R \in [0, y)$

イロン 不得 とくほ とくほ とう

Loan markets

- ► Investors lend their endowment to an investor in exchange for a promise payment m_t ∈ [0, y]
- Behave competitively in the sense that they take m_t as given

イロト イポト イヨト イヨト 二日

Loan markets

- ► Investors lend their endowment to an investor in exchange for a promise payment m_t ∈ [0, y]
- Behave competitively in the sense that they take m_t as given
- Only investors observe project outcome
- ► They can choose to report 0 and make no payment even when outcome is positive (= *strategic default*) in which case they experience disutility τ ~ F

イロト イポト イヨト イヨト 二日

Loan markets

- ► Investors lend their endowment to an investor in exchange for a promise payment m_t ∈ [0, y]
- Behave competitively in the sense that they take m_t as given
- Only investors observe project outcome
- ► They can choose to report 0 and make no payment even when outcome is positive (= *strategic default*) in which case they experience disutility τ ~ F
- Absent other forms of punishment, this imposes $m_t \leq \tau$
- Lending takes place if a solution $m_t \leq \tau$ to

$$\pi(1-F(m_t))m_t=R.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Existence: Dubey et al. (2005), Quintin (2013)

Exogenous exclusion

- ► Exclusion technology is a sequence {*φ_s*}^{+∞}_{s=0} of *forgiveness* probabilities
- An agent is going to be excluded for exactly *n* periods with probability

$$\phi_{n+1}\prod_{s=0}^n(1-\phi_s).$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つく⊙

Exogenous exclusion

- ► Exclusion technology is a sequence {*φ_s*}^{+∞}_{s=0} of *forgiveness* probabilities
- An agent is going to be excluded for exactly *n* periods with probability

$$\phi_{n+1}\prod_{s=0}^n(1-\phi_s).$$

- V^E(n) : expected lifetime utility of agent who has been excluded n periods
- ► V^N: same for non excluded agents

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bellman equations

$$V^{N} = (1 - \pi)\beta V^{E}(0) + \pi E_{\tau} \max\left\{y - m + \beta V^{N}, y - \tau + \beta V^{E}(0)\right\}$$

Bellman equations

$$V^{N} = (1 - \pi)\beta V^{E}(0) + \pi E_{\tau} \max\left\{y - m + \beta V^{N}, y - \tau + \beta V^{E}(0)\right\}$$

$$V^{E}(n) = \phi_{n}V^{N} + (1 - \phi_{n})\beta V^{E}(n+1)$$

Bellman equations

$$V^{N} = (1 - \pi)\beta V^{E}(0) + \pi E_{\tau} \max\left\{y - m + \beta V^{N}, y - \tau + \beta V^{E}(0)\right\}$$

$$V^{E}(n) = \phi_{n}V^{N} + (1 - \phi_{n})\beta V^{E}(n+1)$$

In particular, $V^E(n) \leq V^N$ for all n

Default

Investors choose to pay if

$$m \leq \tau + \beta \left[V^N - V^E(0) \right]$$

making the lender's break-even condition

$$\pi\left(1-F\left(m-\beta\left[V^{N}-V^{E}(0)\right]\right)\right)m=R.$$

ъ

イロト 不同 とくほ とくほ とう

Stationary distributions

$$\mu^{N} = \mu^{N}(1-\delta^{D}) + \sum_{n=0}^{+\infty} \mu^{E}(n)\phi_{n}$$
$$\mu^{E}(0) = \left[\mu^{N} + \sum_{n=0}^{+\infty} \mu^{E}(n)\phi_{n}\right]\delta^{D}$$
$$\mu^{E}(n) = \mu^{E}(n-1)(1-\phi_{n-1}) \text{ for all } n > 0$$

Stationary distributions

$$\mu^{N} = \mu^{N}(1 - \delta^{D}) + \sum_{n=0}^{+\infty} \mu^{E}(n)\phi_{n}$$

$$\mu^{E}(0) = \left[\mu^{N} + \sum_{n=0}^{+\infty} \mu^{E}(n)\phi_{n}\right]\delta^{D}$$

$$\mu^{E}(n) = \mu^{E}(n-1)(1 - \phi_{n-1}) \text{ for all } n > 0$$

Lemma

A stationary equilibrium with $\mu^N > 0$ exists only if

$$\sum_{n=0}^{+\infty} \prod_{s=0}^{n} (1-\phi_n) < +\infty.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つく⊙

Existence

Proposition

A stationary equilibrium with strictly positive investment exists if and only if

1.
$$\sum_{n=0}^{+\infty} \prod_{s=0}^{n} (1-\phi_n) < +\infty$$
,

2. A solution *m* ≤ *y* exists to the lender's break-even condition.

э

Optimal Exclusion

Consider a social planner who designs the exclusion policy to maximize stationary welfare:

$$\mu^{N}V^{N} + \sum_{s=0}^{+\infty} \mu^{E}(s)V^{E}(s)$$

イロト イポト イヨト イヨト

Optimal Exclusion

Consider a social planner who designs the exclusion policy to maximize stationary welfare:

$$\mu^{\mathsf{N}}\mathsf{V}^{\mathsf{N}} + \sum_{s=0}^{+\infty} \mu^{\mathsf{E}}(s) \mathsf{V}^{\mathsf{E}}(s)$$

Proposition

In any stationary equilibrium that maximizes average welfare, the forgiveness policy must be such that for some s^* ,

1.
$$\phi_s = 0$$
 for all $s < s^*$;
2. $\phi_{s^*} \in (0, 1]$;
3. $\phi_{s^*+1} = 1$ and $\phi_s \in [0, 1]$ for all $s > s^* + 1$

1.

イロト イポト イヨト イヨト 二日

Step 1: Maximize the welfare of the excluded

- Given V^E(0), what policy maximizes the welfare of the excluded?
- Knowing $V^E(0)$ pins down *m*, V^N , and δ^D
- Conditional on $V^E(0)$ assume the planner maximizes

$$rac{\sum_{s=0}^{+\infty} \mu^{E}(s) V^{E}(s)}{\sum_{s=0}^{+\infty} \mu^{E}(s)}$$

subject to:

$$V^{E}(0) = \phi_{0} V^{N} + (1 - \phi_{0})\phi_{1}\beta V^{N} + (1 - \phi_{0})(1 - \phi_{1})\phi_{2}\beta^{2} V^{N} + \dots$$

That's best done by front-loading punishment (we show)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

Step 2: Maximize the number of transactions

Lemma

$$\mu^{N} = \frac{1}{1 + \frac{\delta^{D}}{1 - \delta^{D}}(1 + \zeta)}$$

where ζ is negatively related to the welfare of the excluded

Monnet Quintin Optimal Exclusion

|▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ • の Q ()>

Step 2: Maximize the number of transactions

Lemma

$$\mu^{N} = \frac{1}{1 + \frac{\delta^{D}}{1 - \delta^{D}}(1 + \zeta)}$$

where ζ is negatively related to the welfare of the excluded

Maximizing the welfare of the excluded also maximizes the volume of transactions!

Proposition

When default costs are homogenous at given value τ , the optimal exclusion discount solves

$$\kappa = max\left(\pi^2(y-\tau) - \frac{1}{\beta}(R-\tau\pi), 0\right).$$

In particular, exclusion length falls with investor patience (β), project size (y), project quality (π), and with the direct punishment (τ) associated with default.

イロト イポト イヨト イヨト 二日

Exclusion length with strategic default

Assume that ex-post default costs are low at $\tau_L = \tau - \epsilon$ or high at $\tau_H = \tau + \epsilon$

<ロト < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○</p>

Exclusion length with strategic default

Assume that ex-post default costs are low at $\tau_L = \tau - \epsilon$ or high at $\tau_H = \tau + \epsilon$

Proposition

A mean-preserving spread in default costs raises exclusion length for ϵ small enough but must eventually drives exclusion length to zero as ϵ becomes large

Extensions

- 1. Risk-averse investors
- 2. Exogenous punishment while excluded
- 3. Exogenous exit
- 4. Observable income
- 5. Non-stationary forgiveness policies

イロト イポト イヨト イヨト

Extensions

- 1. Risk-averse investors
- 2. Exogenous punishment while excluded
- 3. Exogenous exit
- 4. Observable income
- 5. Non-stationary forgiveness policies

イロト イポト イヨト イヨト

 Full exclusion for a finite and deterministic number of periods maximizes stationary equilibrium welfare

3

イロト 不同 とくほ とくほ とう

- Full exclusion for a finite and deterministic number of periods maximizes stationary equilibrium welfare
- It maximizes the the stationary volume of mutually beneficial transactions ...

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Summary

- Full exclusion for a finite and deterministic number of periods maximizes stationary equilibrium welfare
- It maximizes the the stationary volume of mutually beneficial transactions ...
- ...and the average welfare of the excluded

・ロト ・四ト ・ヨト ・ヨト 三日

Summary

- Full exclusion for a finite and deterministic number of periods maximizes stationary equilibrium welfare
- It maximizes the the stationary volume of mutually beneficial transactions ...
- ...and the average welfare of the excluded
- The optimal length of punishment depends on fundamentals such as agent patience and the direct consequences of default, if any

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ